Skip to main content
Log in

Efficiency Enhancement of Solar Thermal Power Systems Introduction of Secondary Brayton Cycle with Supercritical CO2/C2H6

  • SOLAR ENERGY CONCENTRATORS
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

An improvement of supercritical carbon dioxide Brayton cycle with regeneration coupled with a (carbon dioxide/ethane) shielded as a second cycle before starting the cooling phase in a solar tower installation was carried out. The power block unit in the cycle, as mentioned above designed to produce 160 MWe in the Ouarzazate region, where a gigantic solar project conducted in Morocco with a design point DNI evaluated as 823 W/m2. So, the aim to compare the performance of the s-ethane against the s-CO2, operating in the secondary cycle, two critical parameters studied are, the first one is the effect of turbine inlet temperature on net power. And the second one is the effect of secondary Brayton cycle pressure on the system efficiency. The cycle efficiency, founded to be 58% at high turbine inlet temperature by including an aided s-ethane cycle. The research work is in progress. In perspectives, specific other possible configurations and other trans-critical fluids will address in the secondary Brayton cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Avezova, N.R., Khaitmukhamedov, A.E., Usmanov, A.Y., and Boliyev, B.B., Solar thermal power plants in the world: The experience of development and operation, Appl. Sol. Energy, 2017, vol. 53, no. 1, pp. 72–77.

    Article  Google Scholar 

  2. Hoseinzadeh, S., Ghasemi, M., and Heyns, S., Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems, Renewable Energy, 2020, vol. 160, pp. 323–332.

    Article  Google Scholar 

  3. Hoseinzadeh, S., Ghasemias, R., Havaei, D., and Chamkha, A.J., Numerical investigation of rectangular thermal energy storage units with multiple phase change materials, J. Mol. Liq., 2018, vol. 271, pp. 655–660.

    Article  Google Scholar 

  4. Ouali, H.A.L., Guechchati, R., Moussaoui, M.A., and Mezrhab, A., Performance of parabolic through solar power plant under weather conditions of the Oujda city in Morocco, Appl. Sol. Energy, 2017, vol. 53, no. 1, pp. 45–52.

    Article  Google Scholar 

  5. Loutfi, H., Bernatchou, A., Raoui, Y., and Tadili, R., Learning processes to predict the hourly global, direct, and diffuse solar irradiance from daily global radiation with artificial neural networks, Hindawi Int. J. Photoenergy, 2017, vol. 2017, id. 4025283.

  6. Ouammi, A., Zejli, D., Dagdougui, H., and Benchrifa, R., Artificial neural network analysis of Moroccan solar potential, Renewable Sustainable Energy Rev., 2012, vol. 16, no. 7, pp. 4876–4889.

    Article  Google Scholar 

  7. Kolb, G.J., Ho, C.K., Mancini, T.R., and Gary, J.A., Power tower technology roadmap and cost reduction plan, Technical Report No. 1011644, Albuquerque, NM: Sandia National Laboratories, 2011.

  8. Anarbaev, A.I., Zakhidov, R.A., and Avezov, R.R., Schematic and parametric optimization of solar+fuel boiler installations, Appl. Sol. Energy, 2008, vol. 44, no. 1, pp. 20–23.

    Article  Google Scholar 

  9. Barlev, D., Vidu, R., and Stroeve, P., Innovation in concentrated solar power, Sol. Energy Mater. Sol. Cells, 2011, vol. 95, no. 10, pp. 2703–2725.

    Article  Google Scholar 

  10. Qoaider, L., Thabit, Q., and Kiwan, S., Innovative sensible heat transfer medium for a moving bed heat exchanger in solar central receiver power plants, Appl. Sol. Energy, 2017, vol. 53, no. 2, pp. 161–166.

    Article  Google Scholar 

  11. Saifaoui, D., Elmaanaoui, Y., and Faik, A., A study of organic working fluids of an organic Rankine cycle for solar concentrating power plant, Appl. Sol. Energy, 2014, vol. 50, no. 3, pp. 158–167.

    Article  Google Scholar 

  12. Bae, S.J., Ahn, Y., Lee, J., and Lee, J.I., Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application, J. Power Sources, 2014, vol. 270, no. 15, pp. 608–618.

    Article  Google Scholar 

  13. Kelly, B.D., Advanced thermal energy storage for central receivers with supercritical coolants, Technical Report No. 981926, Sanlúcar la Mayor, Spain: Abengoa Solar, 2010.

  14. Amiralipour, M. and Kouhikamali, R., Potential analysis and technical-economic optimization of conversion of steam power plant into combined water and power, Appl. Therm. Eng., 2019, vol. 151, pp. 191–198.

    Article  Google Scholar 

  15. Feher, E.G., The supercritical thermodynamic power cycle, Energy Convers., 1968, vol. 8, no. 2, pp. 85–90.

    Article  Google Scholar 

  16. Angelino, G., Carbon dioxide condensation cycles for power production, J. Eng. Gas Turbines Power, 1968, vol. 90, no. 3, pp. 287–295.

    Article  Google Scholar 

  17. Sarkar, J. and Bhattacharyya, S., Optimization of recompression s-CO2 power cycle with reheating, Energy Convers. Manage., 2009, vol. 50, no. 8, pp. 1939–1945.

    Article  Google Scholar 

  18. Kulhánek, M. and Dostál, V., Supercritical carbon dioxide cycles thermodynamic analysis and comparison, in Proc. SCCO2 Power Cycle Symposium, 2011, pp. 1–12.

  19. Dostal, V., Driscoll, M.J., and Hejzlar, P., A supercritical carbon dioxide cycle for next generation nuclear reactors, advanced nuclear power technology program, Thesis (Sc. D.), Cambridge: Massachusetts Institute of Technology, 2004.

  20. Dostal, V., Hejzlar, P., and Driscoll, M.J., High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors, Nucl. Technol., 2006, vol. 154, no. 3, pp. 265–282.

    Article  Google Scholar 

  21. Cravalho, E.G. and Smith, J.L., Engineering Thermodynamics, Marshfield, Mass.: Pitman Publishing, 1981.

    Google Scholar 

  22. Ahn, Y., et al., Review of supercritical CO2 power cycle technology and current status of research and development, Nucl. Eng. Technol., 2015, vol. 47, no. 6, pp. 647–661.

    Article  Google Scholar 

  23. Perry, D.W., Robert, H., and Green, D., Perry’s Chemical Engineering Handbook, New York: McGraw-Hill, 1984, 8th ed.

    Google Scholar 

  24. Angelino, G., Carbon dioxide condensation cycles for power production, ASME J. Eng. Power, 1968, vol. 90, no. 3, pp. 287–295.

    Article  Google Scholar 

  25. Perez, J.A. and Driscoll, M., Evaluation of ethane as a power conversion system working fluid for fast reactors, Thesis (S.B.), Cambridge: Massachusetts Institute of Technology, 2008.

  26. Friend, D.G., Ingham, H., and Fly, J.F., Thermophysical properties of ethane, J. Phys. Chem. Ref. Data, 1991, vol. 20, no. 2, pp. 275–347.

    Article  Google Scholar 

  27. Montes, M.J., Abánades, A., and Martínez-Val, J. M., Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple, Sol. Energy, 2009, vol. 83, no. 5, pp. 679–689.

    Article  Google Scholar 

  28. Montes, M.J., Abánades, A., Martínez-Val, J.M., and Valdés, M., Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors, Sol. Energy, 2009, vol. 83, no. 12, pp. 2165–2176.

    Article  Google Scholar 

  29. Collado, F.J. and Guallar, J., A review of optimized design layouts for solar power tower plants with campo code, Renewable Sustainable Energy Rev., 2013, vol. 20, pp. 142–154.

    Article  Google Scholar 

  30. Segal, A. and Epstein, M., Comparative performances of ‘tower-top’ and ‘tower-reflector’ central solar receivers, Sol. Energy, 1999, vol. 65, no. 4, pp. 207–226.

    Article  Google Scholar 

  31. Atifa, M. and Al-Sulaiman, F.A., Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm, Energy Convers. Manage., 2015, vol. 95, pp. 1–9.

    Article  Google Scholar 

  32. Bejan, A., Second-law analysis in heat transfer and thermal design, Adv. Heat Transf., 1982, vol. 15, pp. 1–58.

    Article  Google Scholar 

  33. Beyoud, A., Hassanain, N., and Bouhaouss, A., Numerical evaluation of solar irradiance attenuation for concentrating solar power systems: Case of Morocco, Int. J. Renewable Energy Res., 2018, vol. 8, no. 3.

  34. Behar, O., Khellaf, A., and Mohammedi, K., A review of studies on central receiver solar thermal power plants, Renewable Sustainable Energy Rev., 2013, vol. 23, pp. 12–39.

  35. Feidt, M., Costea, M., and Postelnicu, V., Comparaison entre le cycle simple de Brayton avec apport thermique imposé et avec contrainte de température maximale, Oil Gas Sci. Technol., 2006, vol. 61, pp. 237–245.

    Article  Google Scholar 

  36. Wu, C. and Kiang, R.L., Power performance of a nonisentropic Brayton cycle, J. Eng. Gas Turbines Power, 1991, vol. 113, no. 4, pp. 501–504.

    Article  Google Scholar 

  37. Steady State Simulation. Aspen Plus® User Guide, Cambridge, MA: Aspen Technology, 2000, vol. 2, ver. 10.

  38. Oh Chang, H., Development of a supercritical carbon dioxide Brayton cycle: Improving VHTR efficiency and testing material compatibility, Technical Report, Idaho Falls: Idaho National Laboratory (INL), 2006.

  39. Beyoud, A., Bouhaouss, A., and Hassanain, N., Impact of anthropogenic aerosols on solar beam radiation serving CSP fields (heliostat) in Morocco, in 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 2018, pp. 1–4.

Download references

ACKNOWLEDGMENTS

The authors wish to express his gratitude to prof. Muhammad Azeem Arshad who provided useful feedback which led to a better presentation of the manuscript. The authors are also grateful to IRESEN for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Beyoud.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkader Beyoud, Hassanain, N. & Bouhaous, A. Efficiency Enhancement of Solar Thermal Power Systems Introduction of Secondary Brayton Cycle with Supercritical CO2/C2H6 . Appl. Sol. Energy 56, 413–423 (2020). https://doi.org/10.3103/S0003701X20050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X20050047

Keywords:

Navigation