Skip to main content
Log in

FTViewer Application for Analysis and Visualization of Functional Tomograms of Complex Systems

  • PATTERN RECOGNITION AND IMAGE ANALYSIS AUTOMATED SYSTEMS, HARDWARE AND SOFTWARE
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

Software for studying the spatial structure of various complex systems based on the data of multichannel measurements is developed. Experimental space-time functions without information loss are converted into a functional tomogram: the set of independent oscillations. Each oscillation is generated by one dipole source and has a unique set of characteristics, including frequency, energy, and spatial parameters. It is also possible to select and represent spatial structures obtained by solving the inverse problem with the given accuracy. Using the data of magnetic encephalography (MEG) as an example, various options for filtering and displaying a functional tomogram of the human head are considered. The FTViewer application allows us to study in detail the work of the brain and the nature of noise signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem,” Phys. Med. Biol. 32 (1), 11–22 (1987). https://doi.org/10.1088/0031-9155/32/1/004

    Article  Google Scholar 

  2. J. C. Mosher, P. S. Lewis, and R. M. Leahy, “Multiple dipole modeling and localization from spatio-temporal MEG data,” IEEE Trans. Biomed. Eng. 39 (6), 541–557 (1992). https://doi.org/10.1109/10.141192

    Article  Google Scholar 

  3. Uutela, K., Hamalainen, M., and Salmelin, R., “Global optimization in the localization of neuromagnetic sources,” IEEE Trans. Biomed. Eng. 45 (6), 716–723 (1998). https://doi.org/10.1109/10.678606

    Article  Google Scholar 

  4. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7 (4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Onton, M. Westerfield, J. Townsend, and S. Makeig, “Imaging human EEG dynamics using independent component analysis,” Neurosci. Biobehav. Rev. 30 (6), 808–822 (2006). https://doi.org/10.1016/j.neubiorev.2006.06.007

    Article  Google Scholar 

  6. F. L. Foresta, N. Mammone, and F. C. Morabito, “PCA-ICA for automatic identification of critical events in continuous coma-EEG monitoring,” Biomed. Signal Process. Control 4, 229–235 (2009).

    Article  Google Scholar 

  7. V. Litvak, A. Eusebio, A. Jha, et al., “Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients,” Neuroimage 50 (4), 1578–1588 (2010). https://doi.org/10.1016/j.neuroimage.2009.12.115

    Article  Google Scholar 

  8. R. D. Pascual-Marqui, “Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details,” Methods Find. Exp. Clin. Pharm. 24 (D), 5–12 (2002).

    Google Scholar 

  9. R. Oostenveld, P. Fries, E. Maris, and J. M. Schoffelen, “FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data,” Comput. Intell. Neurosci. 2011, 156869 (2011). https://doi.org/10.1155/2011/156869

    Article  Google Scholar 

  10. A. Stolk, A. Todorovic, J. M. Schoffelen, and R. Oostenveld, “Online and offline tools for head movement compensation in MEG,” Neuroimage 68, 39–48 (2013). https://doi.org/10.1016/j.neuroimage.2012.11.047

    Article  Google Scholar 

  11. P. E. Aguera, K. Jerbi, A. Caclin, and O. Bertrand, “ELAN: A software package for analysis and visualization of MEG, EEG, and LFP signals,” Comput. Intell. Neurosci. 2011, 158970 (2011). https://doi.org/10.1155/2011/158970

    Article  Google Scholar 

  12. F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, “Brainstorm: A user-friendly application for MEG/EEG analysis,” Comput. Intell. Neurosci. 2011, 879716 (2011). https://doi.org/10.1155/2011/879716

    Article  Google Scholar 

  13. R. R. Llinás and M. N. Ustinin, “Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization,” Front. Neural Circuits 8, 43 (2014). https://doi.org/10.3389/fncir.2014.00043

    Article  Google Scholar 

  14. R. R. Llinás, M. N. Ustinin, S. D. Rykunov, A. I. Boyko, V. V. Sychev, K. D. Walton, G. M. Rabello, and Garcia, J., “Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data,” Front. Neurosci. 9, 373 (2015). https://doi.org/10.3389/fnins.2015.00373

    Article  Google Scholar 

  15. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93 (2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301

    Article  Google Scholar 

  16. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Trans. Signal Process. 45, 434–444 (1997). https://doi.org/10.1109/78.554307

    Article  Google Scholar 

  17. J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic inverseproblem,” Phys. Med. Biol. 32, 11–22 (1987). https://doi.org/10.1088/0031-9155/32/1/004

    Article  Google Scholar 

  18. S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A structure for efficient numerical computation,” Comput. Sci. Eng. 13 (2), 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

  19. J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9 (3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  20. P. Ramachandran and G. Varoquaux, “Mayavi: 3D visualization of scientific data,” Comput. Sci. Eng. 13 (2), 40–51 (2011). https://doi.org/10.1109/MCSE.2011.35

    Article  Google Scholar 

  21. W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, 4th ed. (Kitware, 2006).

    Google Scholar 

  22. G. Niso, C. Rogers, J. T. Moreau, L. Y. Chen, C. Madjar, S. Das, E. Bock, F. Tadel, A. Evans, P. Jolicoeur, and S. Baillet, “OMEGA: The Open MEG Archive,” Neuroimage 124, 1182–1187 (2015). https://doi.org/10.1016/j.neuroimage.2015.04.028

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 18-11-00178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. D. Rykunov, E. S. Oplachko or M. N. Ustinin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Stanislav Dmitrievich Rykunov. Born1986. Graduated from Moscow State University of Instrument Engineering and Informatics in 2012 and defended his candidate’s dissertation in 2016. Senior Researcher at the Institute of Mathematical Problems of Biology, Russian Academy of Sciences. Scientific interests: MEG, data processing and analysis, parallel computing. Author of over 40 papers.

Ekaterina Sergeevna Oplachko. Born 1988. Graduated from Voronezh State University in 2011. Researcher at the Institute of Mathematical Problems of Biology, Russian Academy of Sciences. Scientific interests: cloud technologies and encephalography data analysis. Author of 13 papers.

Mikhail Nikolaevich Ustinin. Born: 1957. Graduated from Moscow State University in 1981, defended his candidate’s dissertation in 1990 and his doctoral dissertation in 2004. Deputy director at Keldysh Institute of Applied Mathematics and head of the branch. Scientific interests: the creation of intelligent methods for data analysis and their application in biology and medicine. The author of over 170 papers, including two monographs. Member of the International Society for Neuroscience.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rykunov, S.D., Oplachko, E.S. & Ustinin, M.N. FTViewer Application for Analysis and Visualization of Functional Tomograms of Complex Systems. Pattern Recognit. Image Anal. 30, 716–725 (2020). https://doi.org/10.1134/S1054661820040227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661820040227

Keywords:

Navigation