Skip to main content
Log in

Peanut leaf spot caused by Nothopassalora personata

  • Disease Profile
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Nothopassalora personata is a cosmopolitan plant pathogenic fungus that causes late leaf spot (LLS) of peanut, the main foliar diseases of this crop. The disease emerged during the last decade in the USA and Argentina. Severely affected plants are early defoliated and yield is decreased by 40–50%. During the last decades, effective LLS management worldwide has been achieved using chemical fungicides, which may negatively affect human and animal health as well as the natural stasis of the soil native microbiota. This review provides an updated view of the new research conducted to understand and effectively manage the disease, based mainly on host plant resistance judicious use of fungicides together with other cultural practices such as crop rotation. Breeding for resistance remains challenging, but new SNPs markers for leaf spot diseases have been mapped and may be useful for improving host resistance which can reduce reliance on fungicides, especially after the ban of chlorothalonil in the E.U. Biocontrol using bacterial and fungal agents open new possibilities to reduce the use of chemical fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdou YAM, Gregory WC, Cooper WE (1974) Sources and nature of resistance to Cercospora arachidicola Hori and Cercosporidium personatum (Berk. Et Curtis) Deighton in Arachis species. Peanut Science 1:6–11

    Article  Google Scholar 

  • Agüero D (2017) Mercado internacional y nacional del maní. In: Fernandez E, Giayetto O (eds) El cultivo de maní en Córdoba. Argentina, Ediciones Universidad Nacional de Río Cuarto, Córdoba, pp 411–433

    Google Scholar 

  • Anco D (2018) Peanut disease management. In: South Carolina pest management handbook for field crops. Clemson University Extension, pp 195–205. https://www.clemson.edu/.../pestmanagementhandbook18/2018%20PMH%20MASTER.pdf

  • Anco DJ, Thomas JS, Jordan DL, Shew BB, Monfort WS, Mehl HL, Small IM, Wright DL, Tillman BL, Dufault NS, Hagan AK, Campbell HL (2020) Peanut yield loss in the presence of defoliation caused by late or early leaf spot. Plant Disease 104:1390–1399

    Article  PubMed  Google Scholar 

  • Anderson WF, Beute MK, Wynne JC, Wongkaew S (1990) Statistical procedures for assessment of resistance in a multiple foliar disease complex of peanut. Phytopathology 80:1451–1459

    Article  Google Scholar 

  • Anderson WF, Holbrook CC, Brenneman TB (1993) Resistance to Cercosporidium personatum within peanut germplasm. Peanut Science 20:53–57

    Article  Google Scholar 

  • Andrés J, Pastor N, Ganuza M, Rovera M, Reynoso MM, Torres AM (2016) Biopesticides: an eco- friendly approach for the control of soilborne pathogens in peanut. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. India: springer. Vol. 1: research perspectives. Springer, India, pp 161–179

    Google Scholar 

  • Anil K, Podile AR (2012) HarpinPss-mediated enhancement in growth and biological control of late leaf spot in peanut by a chlorothalonil-tolerant Bacillus thuringiensis SFC24. Microbiological Research 167:194–198

    Article  CAS  PubMed  Google Scholar 

  • Aquino VM, Shokes FM, Gorbet DW, Nutter FW Jr (1995) Late leaf spot progression on peanut as affected by components of partial resistance. Plant Disease 79:74–78

    Article  Google Scholar 

  • Ashish J, Nadaf HL, Gangadhara K (2014) Genetic analysis of rust and late leaf spot in advanced generation recombinant inbred lines of peanut (Arachis hypogaea L.). International Journal of Genetic Engineering and Biotechnology 5:109–114

    Google Scholar 

  • Augusto J, Brenneman TB, Culbreath AK, Sumner P (2010) Night spraying peanut fungicides. I. Extended fungicide residual and integrated disease management. Plant Disease 94:676–682

    Article  CAS  PubMed  Google Scholar 

  • Avenot HA, Michailides TJ (2007) Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant Disease 91:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Aylor DE (1990) The role of intermittent wind in the dispersal of fungal pathogens. Annual Review of Phytopathology 28:73–92

    Article  Google Scholar 

  • Backman PA, Crawford MA (1984) Relationship between yield loss and severity of early and late leaf spot diseases of peanuts. Phytopathology 74:1101–1103

    Article  Google Scholar 

  • Beckerman JL (2013) Detection of fungicide resistance. In: Nita M (ed) Fungicides—showcases of integrated plant disease management from around the world. IntechOpen, London, pp 281-310. https://doi.org/10.5772/3251

  • Bishi SK, Kumar L, Mahatma MK, Khatediya N, Chauhan SM, Misra JB (2015) Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chemistry 167:107–114

    Article  CAS  PubMed  Google Scholar 

  • Bolsa de Comercio de Rosario (2018) Argentina líder en exportaciones del complejo de Maní. Informativo Semanal de la Bolsa de Comercio de Rosario. https://bcr.com.ar/es/print/pdf/node/72852. Accessed 16 December 2019

  • Bourgeois G, Boote KJ (1992) Leaflet and canopy photosynthesis of peanut affected by late leafspot. Agronomy Journal 84:359–366

    Article  Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic Endophytes. Annual Review of Phytopathology 55:61–83

    Article  CAS  PubMed  Google Scholar 

  • Branch WD (2007) Registration of ‘Georgia-06G’ peanut. Journal of Plant Registrations 1:120

    Article  Google Scholar 

  • Branch WD, Culbreath AK (2008) Disease and insect assessment of candidate cultivars for potential use in organic peanut production. Peanut Science 35:61–65

    Article  Google Scholar 

  • Butler DR, Wadia KDR, Reddy RK (1995) Effects of humidity, leaf wetness, temperature and light on conidial production by Phaeoisariopsis personata on groundnut. Plant Pathology 44:662–674

    Article  Google Scholar 

  • Cappiello F, March G, Marinelli A, García J, Tarditi L, D’eramo L, Ferrari S, Rago A, Oddino C (2012) Producción de maní según intensidad de viruela (Cercosporidium personatum). In: March GJ (ed) Ciencia y Tecnología de los cultivos industriales. Maní, Argentina, pp 281–286 ISSN 1853-7677

    Google Scholar 

  • Chapin JW, Thomas JS (2006) Late leaf spot resistance to tebuconazole (Folicur): responding to control failures, and implications for peanut disease management programs in South Carolina. Proceedings of American Peanut Research and Education Society 38:54 (abstr)

    Google Scholar 

  • Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Hayes M, Beer SV, Dong H (2008) Identification of specific fragments of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in rice. Phytopathology 98:781–791

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhang J, Chen Y, Wan S, Zhang L (2019) Detection of peanut leaf spots disease using canopy hyperspectral reflectance. Computers and Electronics in Agriculture 156:677–683

    Article  Google Scholar 

  • Chu Y, Chee P, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P (2019) Major QTLs for resistance to early and late leaf spot diseases are identified on chromosomes 3 and 5 in peanut (Arachis hypogaea). Frontiers in Plant Science 10:883

    Article  PubMed  PubMed Central  Google Scholar 

  • Company M, Stalker HT, Wynne JC (1982) Cytology and leafspot resistance in Arachis hypogaea × wild species hybrids. Euphytica 31:885–893

    Article  Google Scholar 

  • Culbreath AK, Stevenson K, Brenneman TB (2002) Management of late leaf spot of peanut with benomyl and chlorothalonil: a study in preserving fungicide utility. Plant Disease 86:349–355

    Article  CAS  PubMed  Google Scholar 

  • Culbreath AK, Brenneman TB, Kemerait RC Jr, Stevenson KL (2005) Relative performance of tebuconazole and chlorothalonil for control of peanut leaf spot from 1994 through 2004 (abstr.). Proceedings of American Peanut Research and Education Society 37:54–55

    Google Scholar 

  • Culbreath AK, Kemerait RC Jr, Brenneman TB (2006) Management of early leaf spot of peanut as affected by fungicide and date of spray program initiation. Plant Health Progress 7:31

    Article  Google Scholar 

  • Culbreath A, Kemerait R, Brenneman T (2008) Management of leaf spot diseases of peanut with prothioconazole applied alone or in combination with tebuconazole or trifloxystrobin. Peanut Science 35:149–158

    Article  Google Scholar 

  • Culbreath AK, Brenneman TB, Kemerait RC, Hammes GG (2009) Effect of the new pyrazole carboxamide fungicide penthiopyrad on late leaf spot and stem rot of peanut. Pest Management Science 65:66–73

    Article  CAS  PubMed  Google Scholar 

  • Culbreath AK, Brenneman TB, Kemerait RC, Stevenson KL (2016) Changes in the efficacy of pyraclostrobin for control of peanut leaf spot diseases. Proceedings of American Peanut Research and Education Society 48:67 (abstr.)

    Google Scholar 

  • Culbreath AK, Gevens AJ, Stevenson KL (2018) Relative effects of demethylation-inhibiting fungicides on late leaf spot of peanut. Plant Health Progress 19:23–26

    Article  Google Scholar 

  • Culbreath AK, Brenneman TB, Kemerait RC, Stevenson KL, Anco DJ (2019) Combinations of elemental sulfur with demethylation inhibitor fungicides for management of late leaf spot (Nothopassalora personata) of peanut. Crop Protection 125:104911

    Article  CAS  Google Scholar 

  • Culbreath AK, Brenneman TB, Kemerait RC, Stevenson KL, Henn A (2020) Effect of DMI and QoI fungicides mixed with the SDHI fungicide penthiopyrad on late leaf spot of peanut. Crop Protection 137:105298

    Article  CAS  Google Scholar 

  • Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng-Frimpong R, Miningou A, Ojiewo C, Varshney RK (2019) Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant breeding = Zeitschrift fur Pflanzenzuchtung 138:425–444

    Article  PubMed  Google Scholar 

  • Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 316:1890–1893

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Pande S, Rao JN, Nigam SN (2002) Components of resistance to late leaf spot and rust among interspecific derivatives and their significance in a foliar disease resistance breeding in peanut (Arachis hypogaea L.). Euphytica 125:81–88

    Article  CAS  Google Scholar 

  • El-Sayed EO (2017) Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Archives of Agronomy and Soil Science 63:883–896

    Article  Google Scholar 

  • European Commission (EC) (2019) Commission implementing regulation (EU) 2019/677concerning the non-renewal of the approval of the active substance chlorothalonil. Official Journal of European Union. http://data.europa.eu/eli/reg_impl/2019/677/oj. Accessed 20 February 2020

  • Fitt BDL, McCartney HA, Walklate PJ (1989) The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology 27:241–270

    Article  Google Scholar 

  • Fulmer AM (2017) Differentiation, prediction and management of early and late leaf spot of peanut in the southeastern United States and Haiti. Ph.D. thesis, University of Georgia, Athens, GA

  • Ganuza M, Pastor N, Erazo J, Andrés J, Reynoso MM, Rovera M, Torres AM (2017) Efficacy of the biocontrol agent Trichoderma harzianum ITEM 3636 against peanut smut, an emergent disease caused by Thecaphora frezii. European Journal of Plant Pathology 151:257–262

    Google Scholar 

  • Ganuza M, Pastor N, Boccolini M, Erazo J, Palacios S, Oddino C, Reynoso MM, Rovera M, Torres AM (2019) Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. Journal of Applied Microbiology 126:608–623

    Article  CAS  PubMed  Google Scholar 

  • GCP (2011) CGIAR generation challenge programme. 2011 Project updates. Texcoco, Mexico: Generation Challenge Programme

  • Gowda M, Motagi BN, Naidu GK, Diddimani SB, Shesagiri R (2002) GPBD4: a Spanish bunch groundnut genotype resistant to rust and late leafspot. International Arachis Newsletter 22:29–31

    Google Scholar 

  • Gremillion S, Culbreath A, Gorbet D, Mullinix B Jr, Pittman R, Stevenson K, Todd J, Condori M (2011) Response of progeny bred from bolivian and north American cultivars in integrated management systems for leaf spot of peanut (Arachis hypogaea). Crop Protection 30:698–704

    Article  Google Scholar 

  • Hammons RO, Herman D, Stalker HT (2016) Origin and early history of the peanut. In: Stalker HT, Wilson RF (eds) Peanuts: genetics, processing, and utilization. Academic Press and AOCS Press, 125 London Wall, London, UK. pp 1–26

  • Hasan MM, Hossain I, Kashem MA, Mondal MMA, Rafii MY, Latif MA (2016) Effect of botanicals and biofungicide on controlling tikka disease (Cercospora sp.) of peanut (Arachis hypogea L.). Legume Research 391:114–122

    Google Scholar 

  • Holbrook CC, Culbreath AK (2008) Registration of ‘Georganic’ peanut. Journal of Plant Registration 2:17

    Article  Google Scholar 

  • Hossain MD, Rahman MZ, Khatun A, Rahman MM (2007) Screening of peanut genotypes for leaf spots and rust resistance. International Journal of Sustainable Crop Production 2:7–10

    Google Scholar 

  • Houshyarfard M, Dahkai MTP (2018) Evaluation of peanut genotypes for resistance to Cercospora leaf spot diseases in Iran. Journal of Crop Protection 7:437–446

    Google Scholar 

  • Ijaz M, Ali AR, Afzal A (2019) Impact of crop rotation on Cercospora leaf spot of peanut. Plant Protection 3:41–45

    Article  Google Scholar 

  • Izge AU, Mohammed ZH, Goni A (2007) Levels of variability in groundnut (Arachis hypogaea L.) to Cercospora leafspot disease—implications for selection. African Journal of Agricultural Research 2:182–186

    Google Scholar 

  • Jadon KS, Thirumalaisamy PP, Kumar V, Koradia VG, Padavi RD (2015) Management of soil borne diseases of groundnut through seed dressing fungicides. Crop Protection 78:198–203

    Article  CAS  Google Scholar 

  • Janila P, Ramaiah V, Rathore A, Rupakula A, Reddy RK, Waliyar F, Nigam SN (2013) Genetic analysis of resistance to late leaf spot in interspecifc peanuts. Euphytica 193:13–25

    Article  Google Scholar 

  • Janila P, Pandey MK, Manohar SS, Variath MT, Nallathambi P, Nadaf HL, Sudini H, Varshney RK (2016) Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea L.) record higher pod and haulm yield in multilocation testing. Plant Breeding 135:355–366

    Article  Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control 24:285–291

    Article  Google Scholar 

  • Johnson RC, Cantonwine EG (2013) Post-infection activities of fungicides against Cercospora arachidicola of peanut (Arachis hypogaea). Pest Management Science 70:1202–1206

    Article  PubMed  Google Scholar 

  • Jordan BS, Culbreath AK, Brenneman TB, Kemerait RC, Branch WD (2017) Late leaf spot severity and yield of new peanut breeding lines and cultivars grown without fungicides. Plant Disease 101:1843–1850

    Article  PubMed  Google Scholar 

  • Jordan BS, Culbreath AK, Brenneman TB, Kemerait RC Jr, Stevenson KL (2019) Effect of planting date and peanut cultivar on epidemics of late leaf spot in Georgia. Plant Disease 103:990–995

    Article  PubMed  Google Scholar 

  • Kanyika BTN, Lungu D, Mweetwa A, Kaimoyo E, Njung’e VM, Monyo ES, Siambi M, He G, Prakash CN, Zhao Y, de Villiers SM (2015) Identification of groundnut (Arachis hypogaea L.) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electronic Journal of Biotechnology 18:61–67

    Article  Google Scholar 

  • Kemerait RC, Brenneman TB, Culbreath AK (2017) Peanut disease update. In: Monfort W (ed) Peanut Update. Coop. Ext. Ser. College of Agric. Environ. Sci. University of Georgia, Athens, pp 23–62

  • Khedikar YP, Gowda MVC, Sarvamangala C, Patgar KV, Upadhyaya HD, Varshney RK (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics 121:971–984

    Article  CAS  PubMed  Google Scholar 

  • Kifle MH, Yobo KS, Laing MD (2016) Biocontrol of Aspergillus flavus in peanut using Trichoderma harzianum stain kd. Journal of Plant Diseases and Protection 124:1–6

    Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005a) Biological control of collar rot disease with broad spectrum antifungal bacteria associated with peanut. Canadian Journal of Microbiology 51:123–132

    Article  CAS  PubMed  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005b) Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005c) Management of late leaf spot of peanut (Arachis hypogaea) with chlorothalonil-tolerant isolates of Pseudomonas aeruginosa. Plant Pathology 54:401–408

    Article  CAS  Google Scholar 

  • Köhl J, Booij K, Kolnaar R, Ravensberg WJ (2019) Ecological arguments to reconsider data requirements regarding the environmental fate of microbial biocontrol agents in the registration procedure in the European Union. BioControl 64:469–448

    Article  Google Scholar 

  • Kolte SJ (1985) Diseases of annual edible oilseeds crops. Vol I. Groundnut. CRC Press, Boca Raton, p 155 ISBN 9781315892351

    Google Scholar 

  • Kondoh M, Hirai M, Shoda M (2001) Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. Journal of Bioscience and Bioengineering 91:173–177

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Culbreath AK, Chen CY, Knapp SJ, Holbrook CC, Guo B (2012) Variability in field response of peanut genotypes from the U.S. and China to tomato spotted wilt virus and leaf spots. Peanut Science 39:30–37

    Article  Google Scholar 

  • Liang Y, Barring M, Wang S, Septiningsih EM (2017) Mapping QTLs for leafspot resistance in peanut using SNP-based next-generation sequencing markers. Plant Breeding and Biotechnology 5:115–122

    Article  Google Scholar 

  • Littrell RH (1974) Tolerance in Cercospora arachidicola to benomyl and related fungicides. Phytopathology 64:1377–1378

    Article  CAS  Google Scholar 

  • Manjula K, Kishore GK, Podile AR (2004) Whole cells of Bacillus subtilis AF 1 proved more effective than cell free and chitinase based formulations in biological control of citrus fruit rot and peanut rust. Canadian Journal of Microbiology 50:737–744

    Article  CAS  PubMed  Google Scholar 

  • March G, Marinelli A (1998) Enfermedades del Maní. In: Pedelini R, Casini C (eds) Manual del Maní 3ª Edición. INTA, Manfredi, pp 24–35

    Google Scholar 

  • Marinelli A, March GJ (2005) Viruela. In: Marinelli A (ed) March GJ. Enfermedades del maní en Argentina, Ediciones Biglia, pp 13–39

    Google Scholar 

  • Marinelli A, March GJ, Alcalde M, Acquarone S (1992) Análisis y comparación de epifitias de la viruela del maní según distintos sistemas de cultivo. Agriscientia 9:71–78

    Google Scholar 

  • Marinelli A, Oddino CM, March GJ (2017) Enfermedades fúngicas del maní. In: Fernandez E, Giayetto O (eds) El cultivo de maní en Argentina. 2° Edición. Ediciónes UNRC. Córdoba, Argentina, pp 285-311. ISBN 978-987-42-3736-1

  • McDonald D, Subrahmanyam P, Gibbons RW, Smith DH (1985) Early and late leaf spots of peanut. Information bulletin no. 21. Patancheru, a.P. 502 324, India: ICRISAT

  • McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012) International code of nomenclature for algae, fungi, and plants (Melbourne code) adopted by the eighteenth international botanical congress Melbourne, Australia, July 2011. Regnum Vegetabile 154:1–140

    Google Scholar 

  • Méndez-Natera JR, Luna-Tineo JA, Barrios-Azócar LA, Cedeño JR (2016) Screening of Indian peanut genotypes for resistance to Cercospora leafspot under savanna conditions. Emirates Journal of Food and Agriculture 28:833–841

    Article  Google Scholar 

  • Monyo ES, Varshney RK (eds) (2016) Seven seasons of learning and engaging smallholder farmers in the drought-prone areas of sub-Saharan Africa and South Asia through tropical legumes, 2007–2014. Patancheru 502 324. International Crops Research Institute for the Semi-Arid Tropics, Telangana ISBN 978-92-9066-568-7. 236 pp

    Google Scholar 

  • Moraes SA, Godoy IJ (1997) Amendoim – Controle de doenças. In: Vale FXR, Zambolim L (eds) Controle de Doenças de Plantas: grandes Culturas. Viçosa, MG. UFV. Suprema Gráfica e Editora Ltda, pp 1–49

    Google Scholar 

  • Moraes SA, Godoy IJ, Martins ALM, Pereira JCVNA, Pedro Júnior MJ (1994) Epidemiologia da mancha preta (Cercosporidium personatum) em amendoim: resistência, controle químico e progresso da doença. Fitopatologia Brasileira 19:532–540

    Google Scholar 

  • Motagi BN (2001) Genetic analysis of resistance to late leaf spot and rust vis-à-vis productivity in peanut (Arachis hypogaea L.) PhD. Thesis, University of Agricultural Sciences, Dharwad, India

  • Nath BC, Singh JP, Srivastava S, Singh RB (2013) Management of late leaf spot of peanut by different fungicides and their impact on yield. Plant Pathology Journal 12:85–91

    Article  CAS  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical Reviews in Biotechnology 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nutter FW Jr, Shokes FM (1995) Management of foliar diseases caused by fungi. In: Melouk HA, Shokes FM (eds) Peanut health management. American Phytopathological Society, St. Paul, pp 65–74

    Google Scholar 

  • Oddino C, Giordano F, Paredes J, Cazón L, Giuggia J, Rago A (2018) Efecto de nuevos fungicidas en el control de viruela del maní y el rendimiento del cultivo. Ab Intus 1:9–17 ISSN 2618-2734

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Pande S, Narayara Nao J, Dwivedi SL (2002) Components of resistance to late leaf spot caused by Phaeoisariopsis personata in inter-specific derivatives of peanut. Indian Phytopathology 55:444–450

    Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnology Advances 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2017) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedelini R (2016) MANÍ: Guía práctica para su cultivo. Cuarta edición. ISSN 1851-4081

  • Pereira Fávero A, Almeida de Moraes S, Franco Garcia AA, Montenegro Valls JF, Vello NA (2009) Characterization of rust, early and late leaf spot resistance in wild and cultivated peanut germplasm. Scientia Agricola 66:110–117

    Article  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2003) Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Global Change Biology 9:1775–1787

    Article  Google Scholar 

  • Rojo FG, Reynoso MM, Ferez M, Chulze SN, Torres AM (2007) Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection 26:549–555

    Article  Google Scholar 

  • Shokes FM, Culbreath AK (1997) Early and late leaf spots. In: Kokalis-Burelle N, Porter DM, Rodríguez-Kábana R, Smith DH, Subrahmanyam P (eds) Compendium of peanut diseases, 2nd edn. APS Press, St. Paul, pp 17–20 ISBN: 0-89054-218-X

    Google Scholar 

  • Singh MP, Erickson JE, Boote KJ, Tillman BL, Van Bruggen AHC, Jones JW (2011) Photosynthetic consequences of late leaf spot differ between two peanut cultivars with variable levels of resistance. Crop Science 51:2741–2748

    Article  CAS  Google Scholar 

  • Smith DH, Littrell RH (1980) Management of peanut foliar diseases with fungicides. Plant Disease 64:356–361

    Article  Google Scholar 

  • Stalker HT (2013) Peanut. Genetic and Genomic Resources of Grain Legume Improvement. ISBN: 978-0-12-802000-5

  • Stalker HT (2017) Utilizing wild species for peanut improvement. Crop Science 57:1102–1120

    Article  Google Scholar 

  • Subrahmanyam P, Moss JP, McDonald D, Subba Rao PV, Rao VR (1985) Resistance to Cercosporidium personatum leafspot in wild Arachis species. Plant Disease 69:951–954

    Article  Google Scholar 

  • Sudini H, Upadhyaya HD, Reddy SV, Mangala UN, Rathore A, Kumar KVK (2015) Resistance to late leaf spot and rust diseases in ICRISAT’s mini core collection of peanut (Arachis hypogaea L.). Australasian Plant Pathology 44:557–566

    Article  CAS  Google Scholar 

  • Sujay V, Gowda MV, Pandey MK, Bhat RS, Khedikar YP, Nadaf HL, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp SJ, Varshney RK (2012) Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Molecular Breeding 30:773–788

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch F, Pavely N, Shaw M, Hobbelen P, Oliver R (2011) The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathology 60:597–606

    Article  Google Scholar 

  • Vasavirama K, Kirti PB (2012) Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes. Functional & Integrative Genomics 12:625–634

    Article  CAS  Google Scholar 

  • Videira SIR, Groenewald JZ, Nakashima C, Braun U, Barreto RW, de Wit PJGM, Crous PW (2017) Mycosphaerellaceae—chaos or clarity? Studies in Mycology 87:257–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadia KDR, Butler DR (1994) Infection efficiency of Phaeoisariopsis personata and the influence of different wetness patterns on germ-tube growth of the pathogen. Plant Pathology 43:802–812

    Article  Google Scholar 

  • Wadia KDR, McCartney HA, Butler DR (1998) Dispersal of Passalora personata conidia from groundnut by wind and rain. Mycological Research 102:355–360

    Article  Google Scholar 

  • Woodward JE, Brenneman TB, Kemerait RC, Culbreath AK, Smith NB (2014) On-farm evaluations of reduced input fungicide programs in peanut fields with low, moderate, or high levels of disease risk. Peanut Science 41:50–57

    Article  Google Scholar 

  • Zhou X, Xia YL, Liao JH, Liu KD, Li Q, Dong Y, Ren W, Chen Y, Huang L, Liao B, Lei Y, Yan L, Jiang H (2016) Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments. PLoS ONE 11:e0166873

    Article  PubMed  PubMed Central  Google Scholar 

  • Zubrod PJ, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, Payraudeau S, Rasmussen JJ, Rohr J, Scharmüller A, Smalling K, Stehle S, Schulz R, Schäfer RB (2019) Fungicides: an overlooked pesticide class? Environmental Science & Technology 53:3347–3365

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PICT-2017 Number 2740 from the National Agency for Scientific and Technological Promotion (ANPCyT), Argentina.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AM Torres; Investigation, DF Giordano and N.A. Pastor, writing—original draft preparation D.F.Giordano and C.Oddino; writing—review & editing, SA Palacios, NA Pastor, and AM Torres. Funding acquisition: AM Torres.

Corresponding author

Correspondence to A. M. Torres.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

This study was a re-analysis of existing data, which is openly available at locations cited in the reference section. Those not included are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, D.F., Pastor, N., Palacios, S. et al. Peanut leaf spot caused by Nothopassalora personata. Trop. plant pathol. 46, 139–151 (2021). https://doi.org/10.1007/s40858-020-00411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00411-3

Keywords

Navigation