Skip to main content
Log in

Sequential Dihedral Angles (SDAs): A Method for Evaluating the 3D Structure of Proteins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

One of the most important steps in modeling three-dimensional (3D) structures of proteins is the evaluation of the constructed models. The present study suggests that the correctness of a structure may be tested by using the characteristics of sequential dihedral angles (SDAs) between adjacent alpha-carbons (Cα) in the main chains of proteins. From our studies on protein structures in the protein data bank (PDB), the SDAs between the Cα in the main chains are limited in their values. In addition, the sum of the absolute values of the three sequential dihedral angles (SDAs) can never be 0 degree. Moreover, 48 degrees is the lowest value existing for the sum of the absolute values of three sequential dihedral angles (SDAs). Thus, the SDAs between the alpha-carbons along the main chains of proteins may be a useful parameter for evaluating anomalies in protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peyravi F, Latif A, Moshtaghioun SM (2019) A composite approach to protein tertiary structure prediction: hidden Markov Model based on lattice. Bull Math Biol 81:899–918

    Article  CAS  Google Scholar 

  2. Dorn M, e Silva MB, Buriol LS, Lamb LC (2014) Three-dimensional protein structure prediction: methods and computational strategies. Comput Biol Chem 53:251–276

    Article  Google Scholar 

  3. Ramyachitra D, Veeralakshmi V (2017) Bacterial foraging optimization for protein structure prediction using FCC & HP energy model. Gene Rep 7:43–49

    Article  Google Scholar 

  4. Márquez-Chamorro AE, Asencio-Cortés G, Santiesteban-Toca CE, Aguilar-Ruiz JS (2015) Soft computing methods for the prediction of protein tertiary structures: a survey. Appl Soft Comput 35:398–410

    Article  Google Scholar 

  5. Kamal MS, Chowdhury L, Khan MI, Ashour AS, Tavares JMR, Dey N (2017) Hidden Markov model and Chapman Kolmogrov for protein structures prediction from images. Comput Biol Chem 68:231–244

    Article  CAS  Google Scholar 

  6. Diamond JS, Zhang Y (2018) THE-DB: a threading model database for comparative protein structure analysis of the E. coli K12 and human proteomes. Database 2018.

  7. Dill KA (1985) Theory for the folding and stability of globular proteins. Biochemistry 24:1501–1509

    Article  CAS  Google Scholar 

  8. Alas SJ, González-Pérez P (2016) Simulating the folding of HP-sequences with a minimalist model in an inhomogeneous medium. BioSystems 142:52–67

    Article  Google Scholar 

  9. Guo Q, Wang J, Xu Z (2018) Approximation algorithms for protein folding in the hydrophobic-polar model on 3D hexagonal prism lattice. J Comput Biol 25:487–498

    Article  CAS  Google Scholar 

  10. Young DC (2009) Computational drug design: a guide for computational and medicinal chemists. Wiley, Hoboken

    Book  Google Scholar 

  11. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  Google Scholar 

  12. Dehury B, Behera SK, Mahapatra N (2017) Structural dynamics of Casein Kinase I (CKI) from malarial parasite Plasmodium falciparum (isolate 3D7): insights from theoretical modelling and molecular simulations. J Mol Graph Model 71:154–166

    Article  CAS  Google Scholar 

  13. Hassan M, Shahzadi S, Raza H et al (2019) Computational investigation of mechanistic insights of Aβ42 interactions against extracellular domain of nAChRα7 in Alzheimer’s disease. Int J Neurosci 129:666–680

    Article  CAS  Google Scholar 

  14. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  15. Zhao M-L, Wang W, Nie H, Cao S-S, Du L-F (2018) In silico structure prediction and inhibition mechanism studies of AtHDA14 as revealed by homology modeling, docking, molecular dynamics simulation. Comput Biol Chem 75:120–130

    Article  CAS  Google Scholar 

  16. Caballero J, Morales-Bayuelo A, Navarro-Retamal C (2018) Mycobacterium tuberculosis serine/threonine protein kinases: structural information for the design of their specific ATP-competitive inhibitors. J Comput Aided Mol Des 32:1315–1336

    Article  CAS  Google Scholar 

  17. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Bioinform 17:355–362

    Article  CAS  Google Scholar 

  18. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  19. Pontius J, Richelle J, Wodak SJ (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264:121–136

    Article  CAS  Google Scholar 

  20. Beg M, Thakur SC, Meena LS (2018) Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival. Adv Bioinform. https://doi.org/10.1155/2018/6152014

    Article  Google Scholar 

  21. Ramli ANM, Manas NHA, Hamid AAA, Hamid HA, Illias RM (2018) Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food Chem 266:183–191

    Article  CAS  Google Scholar 

  22. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  Google Scholar 

  23. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514

    Article  CAS  Google Scholar 

  24. Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins Struct Funct Bioinform 71:261–277

    Article  CAS  Google Scholar 

  25. Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30:i505–i511

    Article  CAS  Google Scholar 

  26. Ramachandran GN (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  Google Scholar 

  27. Lovell SC, Davis IW, Arendall WB III et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins Struct Funct Bioinform 50:437–450

    Article  CAS  Google Scholar 

  28. Lakshmi B, Ramakrishnan C, Archunan G, Sowdhamini R, Srinivasan N (2014) Investigations of Ramachandran disallowed conformations in protein domain families. Int J Biol Macromol 63:119–125

    Article  CAS  Google Scholar 

  29. Blondel A, Karplus M (1996) New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities. J Compu Chem 17:1132–1141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Atabati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfandi, B., Atabati, M. Sequential Dihedral Angles (SDAs): A Method for Evaluating the 3D Structure of Proteins. Protein J 40, 1–7 (2021). https://doi.org/10.1007/s10930-020-09961-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09961-6

Keyword

Navigation