Skip to main content
Log in

Maximal steady-state entanglement and perfect thermal rectification in non-equilibrium interacting XXZ chains

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a scheme for dissipative preparation of maximal entanglement in a two-qubit Heisenberg XXZ model interacting asymmetrically with two independent boson thermal reservoirs with different temperature. One reservoir is common to both qubits, while the other is connected with just one qubit. We analytically and numerically investigate the steady-state entanglement of the qubits, based on the Markovian quantum master equation. We study the influence of the inherent asymmetry induced by the asymmetrically couplings of qubits to the reservoirs, on the steady-state entanglement of the qubits. While the temperature gradient of reservoirs generally deteriorate quantum correlations, we show that in the presence of the inherent asymmetry, the maximal entanglement can revive by increasing temperature gradient, at high base temperature of the reservoirs. We find that by turning on the asymmetry, perfect rectification can be achieved without introducing any additional asymmetry to the system. We also discover that the obtained perfect rectification is associated with maximizing of the steady-state entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. A. Barenco et al., Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  3. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  4. C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. X. Li et al., Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  6. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.K. Ekert, Rev. Lett. 67, 661 (1991)

    Article  ADS  Google Scholar 

  8. M. A. Nielsen, Ph.D. Dissertation, University of New Mexico, (1998). arXiv:quant-ph/0011036

  9. X. Wang, Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  10. X. Wang, Phys. Lett. A 281, 101 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. X. Wang, Phys. Rev. A 66, 044305 (2002)

    Article  ADS  Google Scholar 

  12. C.M. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  13. G.L. Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  14. L. Zhou et al., Phys. Rev. A 68, 024301 (2003)

    Article  ADS  Google Scholar 

  15. D. Gunlycke, V.M. Kendon, V. Vedral, S. Bose, Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  16. F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  17. M.R. Abbasi, M.M. Golshan, Phys. A 392, 6161 (2013)

    Article  MathSciNet  Google Scholar 

  18. G.-F. Zhang, S.-S. Li, Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  19. O. M. Del Cima, D. H. T. Franco, M. M. Silva, Quantum Stud.: Math. Found. 6, 141 (2019)

  20. M.R. Abbasi, Ann. Phys. 365, 198 (2016)

    Article  ADS  Google Scholar 

  21. S. H. Alizadeh, R. Safaiee , M. M. Golshan, Phys. A 428, 133 (2015)

  22. B. Mojaveri, A. Dehghani, M.A. Fasihi, T. Mohammadpour, Int. J. Theor. Phys. 57, 3396 (2018)

    Article  Google Scholar 

  23. B. Mojaveri, A. Dehghani, M.A. Fasihi, T. Mohammadpour, Int. J. Mod. Phys. B. 33, 1950035 (2019)

    Article  ADS  Google Scholar 

  24. H. Krauter, C.A. Muschik, K. Jensen, W. Wasilewski, J.M. Petersen, J.I. Cirac, E.S. Polzik, Phys. Rev. Lett. 107, 080503 (2011)

    Article  ADS  Google Scholar 

  25. Y. Lin, J.P. Gaebler, F. Reiter, T.R. Tan, R. Bowler, A.S. Sorensen, D. Leibfried, D.J. Wineland, Nature 504, 415 (2013)

    Article  ADS  Google Scholar 

  26. S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, A. Narla, U. Vool, S.M. Girvin, L. Frunzio, M. Mirrahimi, M.H. Devoret, Nature 504, 419 (2013)

    Article  ADS  Google Scholar 

  27. L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  28. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  29. L. Wang, B. Li, Phys. Rev. Lett. 101, 267203 (2008)

    Article  ADS  Google Scholar 

  30. V. Eisler, Z. Zimborás, Phys. Rev. A 71, 042318 (2005)

    Article  ADS  Google Scholar 

  31. N. Lambert, R. Aguado, T. Brandes, Phys. Rev. B 75, 045340 (2007)

    Article  ADS  Google Scholar 

  32. L. Quiroga, F.J. Rodriguez, M.E. Ramirez, R. Paris, Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  33. I. Sinaysky, F. Petruccione, D. Burgarth, Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  34. F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Eur. Phys. J. D 57, 129 (2010)

    Article  ADS  Google Scholar 

  35. J.-Q. Liao, J.-F. Huang, L.-M. Kuang, Phys. Rev. A 83, 052110 (2011)

    Article  ADS  Google Scholar 

  36. L.-A. Wu, D. Segal, Phys. Rev. A 84, 012319 (2011)

    Article  ADS  Google Scholar 

  37. J.C. Castillo, F.J. Rodriguez, L. Quiroga, Phys. Rev. A 88, 022104 (2013)

    Article  ADS  Google Scholar 

  38. Z. Wang, W. Wu, J. Wang, Phys. Rev. A 99, 042320 (2019)

    Article  ADS  Google Scholar 

  39. T. Chen, X.-B. Wang, Phys. E 72, 58 (2015)

    Article  Google Scholar 

  40. J.Q. Liao, J.F. Huang, L.M. Kuang, C.P. Sun, Phys. Rev. A 82, 052109 (2010)

    Article  ADS  Google Scholar 

  41. M. Scala, R. Migliore, A. Messina, J. Phys. A: Math. Theor. 41, 435304 (2008)

    Article  ADS  Google Scholar 

  42. A.L. Gramajo, D. Domínguez, M.J. Sánchez, Phys. Rev. E 98, 042337 (2018)

    Article  ADS  Google Scholar 

  43. E. D. Valle, J. Opt. Soc. Am. B 28, 228 (2011)

  44. X. Wang, J. Wang, Phys. Rev. A 100, 052331 (2019)

    Article  ADS  Google Scholar 

  45. B. Bellomo , M. Antezza Phys. Rev. A 91, 042124 (2015)

  46. F. Tacchino, A. Aufféves, M.F. Santos, D. Gerace, Phys. Rev. Lett. 120, 063604 (2018)

    Article  ADS  Google Scholar 

  47. B. Bellomo, M. Antezza, New J. Phys. 15, 113052 (2013)

    Article  ADS  Google Scholar 

  48. L.-Z. Hu, Z.-X. Man, Y.-J. Xia, Quantum Inf. Proc. 17, 45 (2018)

    Article  ADS  Google Scholar 

  49. M.-J. Wang, Y.J. Xia, Chin. Phys. B. 28, 060303 (2019)

    Article  ADS  Google Scholar 

  50. Z-X. Man, A. Tavakoli, J. B. Brask , Y-J. Xia, Phys. Scr. 94, 075101 (2019)

  51. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  52. C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006)

    Article  ADS  Google Scholar 

  53. D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005)

    Article  ADS  Google Scholar 

  54. E. Pereira, Phys. Rev. E 95, 030104 (2017)

    Article  ADS  Google Scholar 

  55. E. Pereira, Phys. Rev. E. 99, 032116 (2019)

    Article  ADS  Google Scholar 

  56. V. Balachandran, G. Benenti, E. Pereira, G. Casati, D. Poletti, Phys. Rev. E. 99, 032136 (2019)

    Article  ADS  Google Scholar 

  57. V. Balachandran, G. Benenti, E. Pereira, G. Casati, D. Poletti, Phys. Rev. Lett. 120, 200603 (2018)

    Article  ADS  Google Scholar 

  58. T. Werlang, M.A. Marchiori, M.F. Cornelio, D. Valente, Phys. Rev. E. 89, 062109 (2014)

    Article  ADS  Google Scholar 

  59. R. Orbach, Phys. Rev. 112, 309 (1958)

    Article  ADS  Google Scholar 

  60. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  61. E. Svetitsky, H. Suchowski, R. Resh, Y. Shalibo, J.M. Martinis, N. Katz, Nat. Commun. 5, 5617 (2014)

    Article  ADS  Google Scholar 

  62. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010)

    Article  ADS  Google Scholar 

  63. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  64. L.A. Wu, C.X. Yu, D. Segal, Phys. Rev. E 80, 041103 (2009)

    Article  ADS  Google Scholar 

  65. T.M. Nieuwenhuizen, A.E. Allahverdyan, Phys. Rev. E 66, 036102 (2002)

    Article  ADS  Google Scholar 

  66. S. L. Braunstein C. M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

  67. E. Mehran, S. Mahdavifar, R. Jafari, Phys. Rev. A 89, 042306 (2014)

    Article  ADS  Google Scholar 

  68. N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  69. K. Joulain, Y. Ezzahri, J. Drevillon, P. Ben-Abdallah, Appl. Phys. Lett. 106, 133505 (2015)

    Article  ADS  Google Scholar 

  70. Z-X. Man, N. B. An , Y-J. Xia, Phys. Rev. E. 94, 042135 (2016)

  71. T. Werlang, D. Valente, Phys. Rev. E 91, 012143 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mojaveri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojaveri, B., Dehghani, A. & Ahmadi, Z. Maximal steady-state entanglement and perfect thermal rectification in non-equilibrium interacting XXZ chains. Eur. Phys. J. Plus 136, 83 (2021). https://doi.org/10.1140/epjp/s13360-020-01016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01016-0

Navigation