Skip to main content

Advertisement

Log in

Scaling of the reduced energy spectrum of random matrix ensemble

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the reduced energy spectrum \(\{E_{i}^{(n)}\}\), which is constructed by picking one level from every n levels of the original spectrum \( \{E_{i}\}\), in a Gaussian ensemble of random matrix with Dyson index \( \beta \in \left( 0,\infty \right) \). It is shown the joint probability distribution of \(\{E_{i}^{(n)}\}\) bears the same form as \(\{E_{i}\}\) with a rescaled parameter \(\gamma =\frac{n(n+1)}{2}\beta +n-1\). Notably, the nth-order level spacing and gap ratio in \(\{E_{i}\}\) become the lowest order ones in \(\{E_{i}^{(n)}\}\), which explains their distributions found separately by recent studies in a consistent way. Our results also establish the higher-order spacing distributions in random matrix ensembles beyond GOE, GUE and GSE and reveal a hierarchy of structures hidden in the energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository [Authors comment: The data that support the figures within this paper are available from the corresponding author upon reasonable request.]

References

  1. C.E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965)

    Google Scholar 

  2. T.A. Brody et al., Rev. Mod. 53, 385 (1981)

    Article  ADS  Google Scholar 

  3. T. Guhr, A. Múller-Groeling, H.A. Weidenmuller, Phys. Rep. 299, 189 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.L. Mehta, Random Matrix Theory (Springer, New York, 1990)

    Google Scholar 

  5. F. Haake, Quantum Signatures of Chaos (Springer, 2001)

  6. Y.Y. Atas, E. Bogomolny, O. Giraud, G. Roux, Phys. Rev. Lett. 110, 084101 (2013)

    Article  ADS  Google Scholar 

  7. V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  8. Y. Avishai, J. Richert, R. Berkovits, Phys. Rev. B 66, 052416 (2002)

    Article  ADS  Google Scholar 

  9. N. Regnault, R. Nandkishore, Phys. Rev. B 93, 104203 (2016)

    Article  ADS  Google Scholar 

  10. S.D. Geraedts, R. Nandkishore, N. Regnault, Phys. Rev. B 93, 174202 (2016)

    Article  ADS  Google Scholar 

  11. V. Oganesyan, A. Pal, D.A. Huse, Phys. Rev. B 80, 115104 (2009)

    Article  ADS  Google Scholar 

  12. A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  13. S. Iyer, V. Oganesyan, G. Refael, D.A. Huse, Phys. Rev. B 87, 134202 (2013)

    Article  ADS  Google Scholar 

  14. X. Li, S. Ganeshan, J.H. Pixley, S. Das Sarma, Phy. Rev. Lett. 115, 186601 (2015)

    Article  ADS  Google Scholar 

  15. D.J. Luitz, N. Laflorencie, F. Alet, Phys. Rev. B 91, 081103(R) (2015)

    Article  ADS  Google Scholar 

  16. W.-J. Rao, J. Phys.: Condens. Matter 30, 395902 (2018)

    Google Scholar 

  17. A. Sarkar, M. Kothiyal, S. Kumar, Phys. Rev. E 101, 012216 (2020)

    Article  ADS  Google Scholar 

  18. Á.L. Corps, A. Relaño, Phys. Rev. E 101, 022222 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Date, S.R. Jain, M.V.N. Murthy, Phys. Rev. E 51, 198 (1995)

    Article  ADS  Google Scholar 

  20. B. Grémaud, S.R. Jain, J. Phys. A 31, L637 (1998)

    Article  ADS  Google Scholar 

  21. G. Auberson, S.R. Jain, A. Khare, J. Phys. A 34, 695 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. E.B. Bogomolny, U. Gerland, C. Schmit, Eur. Phys. J. B 19, 121 (2001)

    Article  ADS  Google Scholar 

  23. M.L. Ndawana, V.E. Kravtsov, J. Phys. A 36, 3639 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, T.H. Seligman, Phys. Rev. E 54, 3221 (1996)

    Article  ADS  Google Scholar 

  25. P. Shukla, New J. Phys. 18, 021004 (2016)

    Article  ADS  Google Scholar 

  26. M. Serbyn, J.E. Moore, Phys. Rev. B 93, 041424(R) (2016)

    Article  ADS  Google Scholar 

  27. W. Buijsman, V. Cheianov, V. Gritsev, Phys. Rev. Lett. 122, 180601 (2019)

    Article  ADS  Google Scholar 

  28. P. Sierant, J. Zakrzewski, Phys. Rev. B 99, 104205 (2019)

    Article  ADS  Google Scholar 

  29. P. Sierant, J. Zakrzewski, Phys. Rev. B 101, 104201 (2020)

    Article  ADS  Google Scholar 

  30. J.M.G. Gomez, R.A. Molina, A. Relano, J. Retamosa, Phys. Rev. E 66, 036209 (2002)

    Article  ADS  Google Scholar 

  31. Y.Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, E. Vivo, J. Phys. A: Math. Theor. 46, 355204 (2013)

    Article  Google Scholar 

  32. S.H. Tekur, S. Kumar, M.S. Santhanam, Phys. Rev. E 97, 062212 (2018)

    Article  ADS  Google Scholar 

  33. S.H. Tekur, U.T. Bhosale, M.S. Santhanam, Phys. Rev. B 98, 104305 (2018)

    Article  ADS  Google Scholar 

  34. U.T. Bhosale, S.H. Tekur, M.S. Santhanam, Phys. Rev. E 98, 052133 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Rao, M. Vyas, and N. D. Chavda, arXiv:1912.05664v1

  36. A.Y. Abul-Magd, M.H. Simbel, Phys. Rev. E 60, 5371 (1999)

    Article  ADS  Google Scholar 

  37. M.M. Duras, K. Sokalski, Phys. Rev. E 54, 3142 (1996)

    Article  ADS  Google Scholar 

  38. R. Kausar, W.-J. Rao, X. Wan, J. Phys.: Condens. Matter 32, 415605 (2020)

    Google Scholar 

  39. W.-J. Rao, Phys. Rev. B 102, 054202 (2020)

    Article  ADS  Google Scholar 

  40. L. Gong, K. Ma, Phys. Lett. A 384, 126298 (2020)

    Article  MathSciNet  Google Scholar 

  41. A.F. Tzortzakakis, K.G. Makris, E.N. Economou, Phys. Rev. B 101, 014202 (2020)

    Article  ADS  Google Scholar 

  42. H. Hernández-Saldaña, J. Flores, T.H. Seligman, Phys. Rev. E 60, 449 (1999)

    Article  ADS  Google Scholar 

  43. P.J. Forrester, Comm. Math. Phys. 285, 653 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. F. Alet, N. Laflorencie, C. R. Physique 19, 498–525 (2018)

    Article  ADS  Google Scholar 

  45. I. Dumitriu, A. Edelman, J. Math. Phys. (N.Y.) 43, 5830 (2002)

    Article  ADS  Google Scholar 

  46. For standard GOE,GUE and GSE, we can model either by their physical construction or by using Eq. (21) with \(\beta =1,2,4\) to get the energy spectrums, although the DOS might be different. We have verified that these two constructions work almost equally well when studying spacing distributions, even when the matrix is as small as \(200\times 200\)

  47. M.L. Mehta, F.J. Dyson, J. Math. Phys. 4, 701–712 (1963). https://doi.org/10.1063/1.1704008

    Article  ADS  Google Scholar 

  48. L. Sa, P. Ribeiro, T. Prosen, Phys. Rev. X 10, 021019 (2020)

    Google Scholar 

  49. Z. Ahmed, S.R. Jain, Phys Rev. E 67, 045106(R) (2003)

    Article  ADS  Google Scholar 

  50. S.R. Jain, S.C.L. Srivastava, Phys. Rev. E 78, 036213 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China through Grant No. 11904069 and No. 11847005 and No. 11804070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jia Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, WJ., Chen, M.N. Scaling of the reduced energy spectrum of random matrix ensemble. Eur. Phys. J. Plus 136, 81 (2021). https://doi.org/10.1140/epjp/s13360-020-01067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01067-3

Navigation