Skip to main content
Log in

Resonances in \(^{12}{\mathrm C}\) and \(^{24}\mathrm{Mg}\): what do we learn from a microscopic cluster theory?

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We discuss resonance properties in three-body systems, with examples on \(^{12}{\mathrm C}\) and \(^{24}\mathrm{Mg}\). We use a microscopic cluster model, where the generator coordinate is defined in the hyperspherical formalism. The \(^{12}{\mathrm C}\) nucleus is described by an \(\alpha +\alpha +\alpha \) structure, whereas \(^{24}\mathrm{Mg}\) is considered as an \(^{16}\mathrm{O}+\alpha +\alpha \) system. We essentially pay attention to resonances. We review various techniques which may extend variational methods to resonances. We consider \(0^+\) and \(2^+\) states in \(^{12}{\mathrm C}\) and \(^{24}\mathrm{Mg}\). We show that the r.m.s. radius of a resonance is strongly sensitive to the variational basis. This has consequences for the Hoyle state (\(0^+_2\) state in \(^{12}{\mathrm C}\)) whose radius has been calculated or measured in several works. In \(^{24}\mathrm{Mg}\), we identify two \(0^+\) resonances slightly below the three-body threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All numerical results in the present work can be reproduced by using the given values for the parameters.].

References

  1. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U.G. Meißner, Rev. Mod. Phys. 90, 035004 (2018)

    Article  ADS  Google Scholar 

  2. H. Horiuchi, K. Ikeda, K. Katō, Prog. Theor. Phys. Suppl. 192, 1 (2012)

    Article  ADS  Google Scholar 

  3. P. Descouvemont, M. Dufour, Clusters in Nuclei, vol. 2 (Springer, Berlin, 2012)

    Google Scholar 

  4. D. Brink, in Proceedings of the International School of Physics, in “Enrico Fermi,” Course XXXVI, Varenna, 1965, ed. C. Bloch (Academic Press, New-York, 1966) p. 247

  5. Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980)

    Article  ADS  Google Scholar 

  6. K. Ikeda, N. Takigawa, H. Horiuchi, Prog. Theor. Phys. Supp. E 68, 464 (1968)

    Article  ADS  Google Scholar 

  7. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  8. B. Zhou, Y. Funaki, H. Horiuchi, A. Tohsaki, Front. Phys. 15, 14401 (2020)

    Article  ADS  Google Scholar 

  9. T. Neff, H. Feldmeier, Eur. Phys. J. Spec. Top. 156, 69 (2008)

    Article  Google Scholar 

  10. P. Navrátil, S. Quaglioni, I. Stetcu, B.R. Barrett, J. Phys. G 36, 083101 (2009)

    Article  ADS  Google Scholar 

  11. H. Hergert, Front. Phys. 8, 379 (2020)

    Article  Google Scholar 

  12. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Vieweg, Braunschweig, 1977)

    Book  Google Scholar 

  13. H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977)

    Article  ADS  Google Scholar 

  14. M. Freer, H. Fynbo, Prog. Part. Nucl. Phys. 78, 1 (2014)

    Article  ADS  Google Scholar 

  15. P. Navrátil, G.P. Kamuntavičius, B.R. Barrett, Phys. Rev. C 61, 044001 (2000)

    Article  ADS  Google Scholar 

  16. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  17. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  18. D.R. Thompson, M. LeMere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977)

    Article  ADS  Google Scholar 

  19. A.B. Volkov, Nucl. Phys. 74, 33 (1965)

    Article  Google Scholar 

  20. S. Korennov, P. Descouvemont, Nucl. Phys. A 740, 249 (2004)

    Article  ADS  Google Scholar 

  21. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  22. A. Kievsky, S. Rosati, M. Viviani, L.E. Marcucci, L. Girlanda, J. Phys. G 35, 063101 (2008)

    Article  ADS  Google Scholar 

  23. J. Raynal, J. Revai, Nuovo Cim. A 39, 612 (1970)

    Article  ADS  Google Scholar 

  24. P. Descouvemont, Phys. Rev. C 99, 064308 (2019)

    Article  ADS  Google Scholar 

  25. D. Baye, M. Kruglanski, Phys. Rev. C 45, 1321 (1992)

    Article  ADS  Google Scholar 

  26. P. Descouvemont, J. Phys. G 37, 064010 (2010)

    Article  ADS  Google Scholar 

  27. P. Descouvemont, E.M. Tursunov, D. Baye, Nucl. Phys. A 765, 370 (2006)

    Article  ADS  Google Scholar 

  28. A. Damman, P. Descouvemont, Phys. Rev. C 80, 044310 (2009)

    Article  ADS  Google Scholar 

  29. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010)

    Article  ADS  Google Scholar 

  30. Y.K. Ho, Phys. Rep. 99, 1 (1983)

    Article  ADS  Google Scholar 

  31. J. Aguilar, J.M. Combes, Commun. Math. Phys. 22, 269 (1971)

    Article  ADS  Google Scholar 

  32. S. Aoyama, T. Myo, K. Katō, K. Ikeda, Prog. Theor. Phys. 116, 1 (2006)

    Article  ADS  Google Scholar 

  33. R. Suzuki, T. Myo, K. Katō, Prog. Theor. Phys. 113, 1273 (2005)

    Article  ADS  Google Scholar 

  34. R. Suzuki, A.T. Kruppa, B.G. Giraud, K. Katō, Prog. Theor. Phys. 119, 949 (2008)

    Article  ADS  Google Scholar 

  35. U.V. Riss, H.D. Meyer, J. Phys. B 26, 4503 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  36. Y. Takenaka, R. Otani, M. Iwasaki, K. Mimura, M. Ito, Prog. Theor. Exp. Phys. 2014, (2014). https://doi.org/10.1093/ptep/ptu135

  37. M. Ito, K. Yabana, Prog. Theor. Phys. 113, 1047 (2005)

    Article  ADS  Google Scholar 

  38. V.I. Kukulin, V.M. Krasnopol-sky, J. Horǎćek, Theory of Resonances, Principles and Applications (Kluwer Academic, London, 1989)

    Book  Google Scholar 

  39. N. Tanaka, Y. Suzuki, K. Varga, R.G. Lovas, Phys. Rev. C 59, 1391 (1999)

    Article  ADS  Google Scholar 

  40. C. Kurokawa, K. Katō, Phys. Rev. C 71, 021301 (2005)

    Article  ADS  Google Scholar 

  41. C.H. Maier, L.S. Cederbaum, W. Domcke, J. Phys. B 13, L119 (1980)

    Article  ADS  Google Scholar 

  42. S.G. Zhou, J. Meng, E.G. Zhao, J. Phys. B 42, 245001 (2009)

    Article  ADS  Google Scholar 

  43. F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954)

    Article  ADS  Google Scholar 

  44. P. Descouvemont, D. Baye, Phys. Rev. C 36, 54 (1987)

    Article  ADS  Google Scholar 

  45. Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007)

    Article  ADS  Google Scholar 

  46. Y. Funaki, Phys. Rev. C 92, 021302 (2015)

    Article  ADS  Google Scholar 

  47. E. Uegaki, S. Okabe, Y. Abe, H. Tanaka, Prog. Theor. Phys. 57, 1262 (1977)

    Article  ADS  Google Scholar 

  48. M. Kamimura, Nucl. Phys. A 351, 456 (1981)

    Article  ADS  Google Scholar 

  49. M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 98, 032501 (2007)

    Article  ADS  Google Scholar 

  50. Y. Suzuki, H. Matsumura, M. Orabi, Y. Fujiwara, P. Descouvemont, M. Theeten, D. Baye, Phys. Lett. B 659, 160 (2008)

    Article  ADS  Google Scholar 

  51. J.H. Kelley, J.E. Purcell, C.G. Sheu, Nucl. Phys. A 968, 71 (2017)

    Article  ADS  Google Scholar 

  52. S. Ali, A.R. Bodmer, Nucl. Phys. 80, 99 (1966)

    Article  Google Scholar 

  53. B. Buck, H. Friedrich, C. Wheatley, Nucl. Phys. A 275, 246 (1977)

    Article  ADS  Google Scholar 

  54. E.M. Tursunov, D. Baye, P. Descouvemont, Nucl. Phys. A 723, 365 (2003)

    Article  ADS  Google Scholar 

  55. Y. Fujiwara, K. Miyagawa, M. Kohno, Y. Suzuki, D. Baye, J.M. Sparenberg, Phys. Rev. C 70, 024002 (2004)

    Article  ADS  Google Scholar 

  56. P. Descouvemont, D. Baye, Phys. Lett. B 228, 6 (1989)

    Article  ADS  Google Scholar 

  57. T. Ichikawa, N. Itagaki, T. Kawabata, T. Kokalova, W. von Oertzen, Phys. Rev. C 83, 061301 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique—FNRS under Grant Numbers 4.45.10.08 and J.0049.19. It benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement No. 1117545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Descouvemont.

Additional information

Communicated by Nicolas Alamanos

Directeur de Recherches FNRS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Descouvemont, P. Resonances in \(^{12}{\mathrm C}\) and \(^{24}\mathrm{Mg}\): what do we learn from a microscopic cluster theory?. Eur. Phys. J. A 57, 29 (2021). https://doi.org/10.1140/epja/s10050-020-00337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00337-z

Navigation