Skip to main content
Log in

Fabrication of an in situ Al−Nb Metal Matrix Composite by Constrained Shear Strain and Its Emission Efficiency in a Glow Discharge

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Constrained shear strain with subsequent annealing was used to fabricate an in situ Al−Nb metal matrix composite with the fraction of an Al3Nb intermetallic phase of 25 at %. The composite microstructure was studied. The emission efficiency of the Al−Nb composite samples in a glow discharge was determined, along with those of aluminum and niobium as cold cathodes. The difference in the glow current was analyzed by fixed voltages at cathodes made of the studied materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Bondarenko, A. B. Echin, M. Yu. Kolodyazhnyi, and A. R. Narskii, Russ. Metall. (Metally) 2017, 1012 (2017). https://doi.org/10.1134/S0036029517120047

  2. B. A. Greenberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, A. V. Inozemtsev, A. Yu. Volkova, S. V. Kuz’min, and V. I. Lysak, Phys. Met. Metallogr. 113, 1041 (2012). https://doi.org/10.1134/S0031918X12110075

    Article  ADS  Google Scholar 

  3. A. A. Sarkeeva, A. A. Kruglov, R. Y. Lutfullin, S. V. Gladkovskiy, A. P. Zhilyaev, and R. R. Mulyukov, Composites B 187, 107838 (2020). https://doi.org/10.1016/j.compositesb.2020.107838

  4. I. L. Svetlov, M. I. Karpov, A. V. Neiman, and T. S. Stroganova, Russ. Metall. (Metally) 2018, 348 (2018). https://doi.org/10.1134/S0036029518040171

  5. J-K. Han, T. Herndon, J. Jang, T. G. Langdon, and M. Kawasaki, Adv. Eng. Mater 22, 1901289 (2020). https://doi.org/10.1002/adem.201901289

    Article  Google Scholar 

  6. G. Korznikova, R. Kabirov, K. Nazarov, R. Khisamov, R. Shayakhmetov, E. Korznikova, G. Khalikova, and R. Mulyukov, J. Mater. 72, 2898 (2020). https://doi.org/10.1007/s11837-020-04152-1

    Article  Google Scholar 

  7. G. F. Korznikova, K. S. Nazarov, R. K. Khisamov, S. N. Sergeev, R. U. Shayachmetov, G. R. Khalikova, J. A. Baimova, A. M. Glezer, and R. R. Mulyukov, Mater. Lett. 253, 412 (2019). https://doi.org/10.1016/j.matlet.2019.07.124

    Article  Google Scholar 

  8. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977). https://doi.org/10.1063/1.323539

    Article  ADS  Google Scholar 

  9. R. Kh. Khisamov, R. R. Timiryaev, I. M. Safarov, and R. R. Mulyukov, Pis’ma Mater. 10, 223 (2020). https://doi.org/10.22226/2410-3535-2020-2-223-226

    Article  Google Scholar 

  10. B. B. Straumal, A. R. Kilmametov, Yu. O. Kucheev, K. I. Kolesnikova, A. Korneva, P. Zięba, and B. Baretzky, JETP Lett. 100, 376 (2014). https://doi.org/10.1134/S0021364014180106

    Article  ADS  Google Scholar 

  11. B. B. Straumal, V. Pontikis, A. R. Kilmametov, A. A. Mazilkin, S. V. Dobatkin, and B. Baretzky, Acta Mater. 122, 60 (2017). https://doi.org/10.1016/j.actamat.2016.09.024

    Article  ADS  Google Scholar 

  12. B. B. Straumal, A. R. Kilmametov, Y. Ivanisenko, L. Kurmanaeva, B. Baretzky, Y. O. Kucheev, P. Zięba, A. Korneva, and D. A. Molodov, Mater. Lett. 118, 111 (2014). https://doi.org/10.1016/j.matlet.2013.12.042

    Article  Google Scholar 

  13. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2009).

  14. S. Arumugam, P. Alex, and S. K. Sinha, Phys. Plasmas 24, 112106 (2017). https://doi.org/10.1063/1.4997622

    Article  ADS  Google Scholar 

  15. A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Appl. Phys. Lett. 86, 151503 (2005). https://doi.org/10.1063/1.1901819

    Article  ADS  Google Scholar 

  16. A. V. Phelps and Z. L. Petrovic, Plasma Sources Sci. Technol. 8, R21 (1999). https://doi.org/0963-0252/99/030021+24 19.50

Download references

ACKNOWLEDGMENTS

Scanning electron microscopy studies were performed using the facilities of the Structural and Physical Mechanical Studies of Materials Center for Collective Use at the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 18-12-00440) and partially supported by a state order to the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kh. Khisamov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khisamov, R.K., Korznikova, G.F., Khalikova, G.R. et al. Fabrication of an in situ Al−Nb Metal Matrix Composite by Constrained Shear Strain and Its Emission Efficiency in a Glow Discharge. Tech. Phys. Lett. 46, 1200–1202 (2020). https://doi.org/10.1134/S1063785020120093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785020120093

Keywords:

Navigation