Skip to main content
Log in

Ultra-compact Universal Linear-Optical Logic Gate Based on Single Rectangle Plasmonic Slot Nanoantenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical logic gates are key elements in all-optical circuits and computing. However, the footprints of current optical logic gates are still on micrometer scale. There remains challenging for further miniaturization of the logic gates to nanometer scale. In this paper, a simple scheme for realizing ultra-compact universal linear-optical logic gates is proposed. All common logic gates (AND, OR, NOT, NAND, NOR, XOR, and XNOR) encoded via binary phase shift keying are achieved by using single rectangle plasmonic slot nanoantenna with a footprint of 200 nm by 50 nm, which considerably shrinks the dimensions of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this letter.

Code Availability

All simulation parameters of this study are included in this letter.

References

  1. Kirchain R, Kimerling L (2007) A roadmap for nanophotonics. Nat Photonics 1:303–305

    Article  CAS  Google Scholar 

  2. Zebin Z, Jing Y, Liyong J (2020) Multifunctional and multichannel all-optical logic gates based on the in-plane coherent control of localized surface plasmons. Opt Lett 45:6362–6365

    Article  Google Scholar 

  3. Singh P, Tripathi DKr, Jaiswal S, Dixit HK (2014) All-optical logic gates: designs, classification, and comparison. Adv Opt Tech 2014:275083

    Google Scholar 

  4. Liu Y, Qin F, Meng ZM, Zhou F, Mao QH, Li ZY (2011) All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express 19:1945–1953

    Article  CAS  Google Scholar 

  5. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431:1081–1084

    Article  CAS  Google Scholar 

  6. Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M (2010) Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics 4:477

    Article  CAS  Google Scholar 

  7. Ota M, Sumimura A, Fukuhara M, Ishii Y, Fukuda M (2016) Plasmonic-multimode-interference-based logic circuit with simple phase adjustment. Sci Rep 6:24546

    Article  CAS  Google Scholar 

  8. Plum E, MacDonald KF, Fang X, Faccio D, Zheludev NI (2017) Controlling the optical response of 2D matter in standing waves. ACS Photonics 4:3000–3011

    Article  CAS  Google Scholar 

  9. Baranov DG, Krasnok A, Shegai T, Alù A, Chong Y (2017) Coherent perfect absorbers: linear control of light with light. Nat Rev Mater 2:1–14

    Article  Google Scholar 

  10. Yungang S, Xiaojia W, Soniya SR, Chun-Yuan W, Haozhi L, Yufeng D, Dahe L, Jing Z, Hyeyoung A, Shangjr G, Jinwei S (2018) Broadband multifunctional plasmonic logic gates. Adv Opt Mater 6:1701368

    Article  Google Scholar 

  11. Xomalis A, Demirtzioglou I, Plum E, Jung Y, Nalla V, Lacava C, MacDonald KF, Petropoulos P, Richardson DJ, Zheludev NI (2018) Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat Commun 9:1–7

    Article  CAS  Google Scholar 

  12. Papaioannou M, Plum E, Valente J, Rogers ETF, Zheludev NI (2016) All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics 1:090801

    Article  Google Scholar 

  13. Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2:1–5

    Article  CAS  Google Scholar 

  14. Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31755–31765

    Article  Google Scholar 

  15. Chao Q, Xiao L, Xiaobin L, Jian X, Yang S, Erping L, Baile Z, Hongsheng C (2020) Performing optical logic operations by a diffractive neural network. Light-Sci Appl 9:59

    Article  Google Scholar 

  16. Cohen M, Zalevskybc Z, Shavita R (2013) Towards integrated nanoplasmonic logic circuitry Nanoscale 5:5442–5449

    CAS  PubMed  Google Scholar 

  17. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790

    Article  CAS  Google Scholar 

  18. Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas NJ, Xu H (2011) Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett 11:471–475

    Article  CAS  Google Scholar 

  19. Wang F, Gong Z, Hu X, Yang X, Yang H, Gong Q (2016) Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range. Sci Rep 6:1–8

    Article  Google Scholar 

  20. Yan Y, Zhang C, Zheng JY, Yao J, Zhao YS (2012) Optical Modulation Based on Direct Photon-Plasmon Coupling in Organic/Metal Nanowire Heterojunctions. Adv Mater 24:5681–5686

    Article  CAS  Google Scholar 

  21. Qi L, Na L, Chaohua T (2020) All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields. Phys Rev A 101:023818

    Article  Google Scholar 

  22. Liu H, Deng H, Deng S, Teng C, Chen M, Yuan L (2019) Vortex beam encoded all-optical logic gates based on nano-ring plasmonic antennas. Nanomaterials 9:1649

    Article  CAS  Google Scholar 

  23. Lopes JH, Soares WC, Bernardo BdL, Caetano DP, Canabarro (2019) A Linear optical CNOT gate with orbital angular momentum and polarization. Quantum Info. Process. 18: 256.

  24. Yang Z, Fu Y, Yang J, Hua C, Zhang J (2018) Spin-encoded subwavelength all-optical logic gates based on single-element optical slot nanoantennas. Nanoscale 10:4523–4527

    Article  CAS  Google Scholar 

  25. Lin J, Mueller JPB, Wang Q, Yuan GH, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340:331

    Article  CAS  Google Scholar 

  26. Yang J, Zhou S, Hu C, Zhang W, Xiao X, Zhang J (2014) Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas. Laser Photonics Rev 8:590

    Article  CAS  Google Scholar 

  27. Guo R, Decker M, Setzpfandt F, Gai X, Choi DY, Kiselev R, Chipouline A, Staude I, Pertsch T, Neshev DN, Kivshar YS (2017) High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Science advances 3:e1700007

    Article  Google Scholar 

  28. Sun Y, Zhao C, Li G, Li X, Wang S (2019) Enlarging spin-dependent transverse displacement of surface plasmon polaritons focus. Opt Express 27:11112–11121

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by National Key Research and Development Program of China (2019YFB2203901), National Natural Science Foundations of China (NSFC) (62065006, 61827819, 61975038), Natural Science Foundations of Guangxi (2019GXNSFAA245024, 2020GXNSFBA159059, 2019GXNSFBA245057), Science and Technology Project of Guangxi (AD19245064, AD18281092), Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi (2018KY0200), Guangxi Key Laboratory Project of Optoelectronic Information Processing (GD20103), Guangxi Key Laboratory Project of Automatic Detection Technology and Instrument (YQ20103), and Innovation Project of GUET Graduate Education (2019YCXS092).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Houquan Liu, Zhiqiang Quan, Yu Cheng; investigation, Houquan Liu, Zhiqiang Quan, Shijie Deng; writing—original draft preparation, Houquan Liu, Zhiqiang Quan; writing—review and editing, Yu Cheng, Libo Yuan; funding acquisition, Houquan Liu, Yu Cheng, Shijie Deng, Libo Yuan.

Corresponding authors

Correspondence to Houquan Liu or Yu Cheng.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

All authors agree to participate.

Consent to Publish

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Quan, Z., Cheng, Y. et al. Ultra-compact Universal Linear-Optical Logic Gate Based on Single Rectangle Plasmonic Slot Nanoantenna. Plasmonics 16, 973–980 (2021). https://doi.org/10.1007/s11468-020-01363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01363-9

Keywords

Navigation