Skip to main content
Log in

Allantoin: Emerging Role in Plant Abiotic Stress Tolerance

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2021

This article has been updated

Abstract

Allantoin is an intermediate product of purine catabolic pathway that helps in nitrogen mobilization in plants. It is ubiquitously present in the plant kingdom and serves as an important N form transported from source to sink. During the recent years, allantoin has emerged as a molecule involved in increasing stress tolerance in plants. Higher allantoin biosynthesis and accumulation in plants is correlated with an increase in different abiotic stress tolerance such as drought, salt, cold, heavy metals and irradiance. Increased allantoin accumulation subsequently activates ABA (abscisic acid) biosynthetic genes which in turn activate its hallmark downstream stress-related genes such as RD26 and 29 (response to desiccation), CAT2 (catalase2), Mn/Fe/Cu/Zn superoxide dismutases and SOS1 (salt overly sensitive 1). External application of allantoin on plants acts as signalling molecule that induces a complex crosstalk between ABA and JA (Jasmonic acid) pathway resulting in increased stress tolerance in plants. Recently, allantoin has been attributed to the role of kin recognition in plants, which highlights its role as a signal molecule that facilitates inter-plant interactions. In this review, we present the up to date understanding of this Nitrogen carrying compound, which has recently emerged as a molecule that plays important roles in abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Alamillo JM, Díaz-Leal JL, Sánchez Moran MA, Pineda M (2010) Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant Cell Env 33:1828–1837

    CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashihara H, Stasolla C, Fujimura T, Crozier A (2018) Purine salvage in plants. Phytochem 147:89–124

    CAS  Google Scholar 

  • Baral B, da Silva JAT, Izaguirre-Mayoral ML (2016) Early signaling, synthesis, transport and metabolism of ureides. J Plant Physiol 193:97–109

    CAS  PubMed  Google Scholar 

  • Becker LC, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA (2010) Final report of the safety assessment of allantoin and its related complexes. Int J Tox 29:84S-97S

    CAS  Google Scholar 

  • Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54:496–509

    CAS  PubMed  Google Scholar 

  • Casartelli A, Riewe D, Hubberten HM, Altmann T, Hoefgen R, Heuer S (2018) Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11:1–16

    Google Scholar 

  • Cendron L, Ramazzina I, Puggioni V, Maccacaro E, Liuzzi A, Secchi A, Zanotti G, Percudani R (2016) The structure and function of a microbial allantoin racemase reveal the origin and conservation of a catalytic mechanism. Biochem 55:6421–6432

    CAS  Google Scholar 

  • Coleto I, Pineda M, Rodiño AP, De Ron AM, Alamillo JM (2014) Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance. Annal Bot 113:1071–1082

    CAS  Google Scholar 

  • Collier R, Tegeder M (2012) Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. Plant J 72:355–367

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Gómez M, Hernández JA, Luis A (1993) Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J Plant Physiol 141:160–165

    CAS  Google Scholar 

  • Desimone M, Catoni E, Ludewig U, Hilpert M, Schneider A, Kunze R, Tegeder M, Frommer WB, Schumacher K (2002) A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis. Plant Cell 14:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Leal JL, Gálvez-Valdivieso G, Fernández J, Pineda M, Alamillo JM (2012) Developmental effects on ureide levels are mediated by tissue-specific regulation of allantoinase in Phaseolus vulgaris L. J Exp Bot 63:4095–4106

    PubMed  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:110–126

    Google Scholar 

  • Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132:851–870

    CAS  PubMed  Google Scholar 

  • Gil-Quintana E, Larrainzar E, Seminario A, Díaz-Leal JL, Alamillo JM, Pineda M, Arrese-Igor C, Wienkoop S, González EM (2013) Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot 64:2171–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalck TE, Bailey JE (2008) International Cosmetic Ingredient Dictionary and Handbook, 12th edn. CTFA, Washington, DC

    Google Scholar 

  • Gus’Kov EP, Prokof’ev VN, Kletskii ME, Kornienko IV, Gapurenko OA, Olekhnovich LP, Chistyakov VA, Shestopalov AV, Sazykina MA, Markeev AV, Shkurat TP (2004) Allantoin as a vitamin. Doklady Biochem Biophys 398:320–324

    CAS  Google Scholar 

  • Gus’Kov EP, Shkurat TP, Milyutina NP, Prokofev VN, Pokudina IO, Mashkina EV, Timofeeva IV (2001) Effect of allantoin on the activity of enzymes providing regulation of the ROS-dependent status of an organism. Doklady Biochem Biophys 379:239–242

    CAS  Google Scholar 

  • Hauck OK, Scharnberg J, Escobar NM, Wanner G, Giavalisco P, Witte CP (2014) Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance. Plant Cell 26:3090–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irani S, Lobo JM, Gray GR, Todd CD (2018) Allantoin accumulation in response to increased growth irradiance in Arabidopsis thaliana. Biol Plant 62:181–187

    CAS  Google Scholar 

  • Irani S, Todd CD (2016) Ureide metabolism under abiotic stress in Arabidopsis thaliana. Plant Physiol 199:87–95

    CAS  Google Scholar 

  • Irani S, Todd CD (2018) Exogenous allantoin increases Arabidopsis seedlings tolerance to NaCl stress and regulates expression of oxidative stress response genes. J Plant Physiol 221:43–50

    CAS  PubMed  Google Scholar 

  • Kaur A, Sheoran IS, Singh R (1985) Effect of water stress on the enzymes of nitrogen metabolism in mung bean (Vigna radiata Wilczeck) nodules. Plant Cell Env 8:195–200

    CAS  Google Scholar 

  • Kaur H, Shukla RK, Yadav G, Chattopadhyay D, Majee M (2008) Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant Cell Env 31:1701–1716

    CAS  Google Scholar 

  • Kaur H, Verma P, Petla BP, Rao V, Saxena SC, Majee M (2012) Ectopic expression of the ABA inducible dehydration responsive chickpea L-myo-inositol 1 -phosphate synthase 2 (CaMIPS2) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta 237:321–335

    PubMed  Google Scholar 

  • Khadri M, Pliego L, Soussi M, Lluch C, Ocaña A (2001) Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress. Agronomie 21:635–643

    Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    CAS  Google Scholar 

  • Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2019) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Env 42:115–132

    CAS  Google Scholar 

  • Kim K, Park J, Rhee S (2007) Structural and functional basis for (S)-allantoin formation in the ureide pathway. J Biol Chem 282:23457–23464

    CAS  PubMed  Google Scholar 

  • King CA, Purcell LC (2001) Soybean nodule size and relationship to nitrogen fixation response to water deficit. Crop Sci 41:1099–1107

    Google Scholar 

  • King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:1389–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Redillas MC, Jung H, Choi S, Kim YS, Kim JK (2018) A nitrogen molecular sensing system, comprised of the ALLANTOINASE and UREIDE PERMEASE 1 genes, can be used to monitor N status in rice. Front Plant Sci 9

  • Layzell DB, LaRue TA (1982) Modeling C and N transport to developing soybean fruits. Plant Physiol 70:1290–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lescano CI, Martini C, González CA, Desimone M (2016) Allantoin accumulation mediated by allantoinase down regulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol Biol 91:581–595

    CAS  PubMed  Google Scholar 

  • Lescano I, Bogino MF, Martini C, Tessi TM, González CA, Schumacher K, Desimone M (2020) Arabidopsis thaliana Ureide Permease 5 (AtUPS5) connects cell compartments involved in Ureide metabolism. Plant Physiol. https://doi.org/10.1104/pp.19.01136

    Article  PubMed  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279:28539–28552

    CAS  PubMed  Google Scholar 

  • Malik VM, Lobo JM, Stewart C, Irani S, Todd CD, Gray GR (2016) Growth irradiance affects ureide accumulation and tolerance to photoinhibition in Eutrema salsugineum (Thellungiella salsuginea). Photosynth 54:93–100

    CAS  Google Scholar 

  • Matsumoto T, Yatazawa M, Yamamoto Y (1977) Distribution and change in the contents of allantoin and allantoic acid in developing nodulating and non-nodulating soybean plants. Plant Cell Physiol 18:353–359

    CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    CAS  PubMed  Google Scholar 

  • Molla KA, Debnath AB, Ganie SA, Mondal TK (2015) Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biol 15:122

  • Nakagawa A, Sakamoto S, Takahashi M, Morikawa H, Sakamoto A (2007) The RNAi-mediated silencing of xanthine dehydrogenase impairs growth and fertility and accelerates leaf senescence in transgenic Arabidopsis plants. Plant Cell Physiol 48:1484–1495

    CAS  PubMed  Google Scholar 

  • Nam MH, Bang E, Kwon TY, Kim Y, Kim EH, Cho K, Park WJ, Kim BG, Yoon IS (2015) Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. Inter J Mol Sci 16:21959–21974

    CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phyto 182:31–48

    Google Scholar 

  • Niu Y, Figueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62:2143–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nourimand M, Todd CD (2016) Allantoin increases cadmium tolerance in Arabidopsis via activation of antioxidant mechanisms. Plant Cell Physiol 57:2485–2496

    CAS  PubMed  Google Scholar 

  • Nourimand M, Todd CD (2017) Allantoin contributes to the stress response in cadmium-treated Arabidopsis roots. Plant Physiol Biochem 119:103–109

    CAS  PubMed  Google Scholar 

  • Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BW, Cushman JC (2011) A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23:1231–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pélissier HC, Frerich A, Desimone M, Schumacher K, Tegeder M (2004) PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiol 134:664–675

    PubMed  PubMed Central  Google Scholar 

  • Pélissier HC, Tegeder M (2007) PvUPS1 plays a role in source–sink transport of allantoin in French bean (Phaseolus vulgaris). Funct Plant Biol 34:282–291

    PubMed  Google Scholar 

  • Pessoa J, Sárkány Z, Ferreira-da-Silva F, Martins S, Almeida MR, Li J, Damas AM (2010) Functional characterization of Arabidopsis thaliana transthyretin-like protein. BMC Plant Biol 10:30–40

    PubMed  PubMed Central  Google Scholar 

  • Pompelli MF, Pompelli GM, de Oliveira AF, Antunes WC (2013) The effect of light and nitrogen availability on the caffeine, theophylline and allantoin contents in the leaves of Coffea arabica L. AIMS Environ Sci 1:1–11

    Google Scholar 

  • Rainbird RM, Thorne JH, Hardy RW (1984) Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiol 74:329–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AV, Venkateswarlu B (1987) Nitrogen fixation as influenced by water stress in selected crop legumes of the Indian arid zone. Arid Land Res Manag 1:89–96

    Google Scholar 

  • Raso MJ, Pineda M, Piedras P (2007) Tissue abundance and characterization of two purified proteins with allantoinase activity from French bean (Phaseolus vulgaris). Physiol Plant 131:355–366

    CAS  PubMed  Google Scholar 

  • Redillas MCFR, Bang SW, Lee DK, Kim YS, Jung H, Chung PJ, Suh JW, Kim JK (2019) Allantoin accumulation through overexpression of ureide permease1 improves rice growth under limited nitrogen conditions. Plant Biotech J 17:1289–1301

    CAS  Google Scholar 

  • Sagi M, Omarov RT, Lips SH (1998) The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Sci 135:125–135

    CAS  Google Scholar 

  • Salvi P, Saxena SC, Petla BP, Kamble NU, Kaur H, Verma P, Rao V, Ghosh S, Majee M (2016) Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation. Sci Rep 6:35088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savić VL, Nikolić VD, Arsić IA, Stanojević LP, Najman SJ, Stojanović S, Mladenović-Ranisavljević II (2015) Comparative study of the biological activity of allantoin and aqueous extract of the comfrey root. Phytother Res 8:1117–11122

    Google Scholar 

  • Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. InPlant acclimation to environmental stress. Springer, New York, pp 197–232

    Google Scholar 

  • Schmidt A, Baumann N, Schwarzkopf A, Frommer WB, Desimone M (2006) Comparative studies on Ureide Permeases in Arabidopsis thaliana and analysis of two alternative splice variants of AtUPS5. Planta 224:1329–1340

    CAS  PubMed  Google Scholar 

  • Schmidt A, Su YH, Kunze R, Warner S, Hewitt M, Slocum RD, Ludewig U, Frommer WB, Desimone M (2004) UPS1 and UPS2 from Arabidopsis mediate high affinity transport of uracil and 5-fluorouracil. J Biolog Chem 279:44817–44824

    CAS  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Ann Rev Plant Biol 37:539–574

    CAS  Google Scholar 

  • Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, Velarde-Buendia A, Massart A, Hill CB, Roessner U, Bacic A (2016) Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol 172:2445–2458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 7:e38554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltabayeva A, Srivastava S, Kurmanbyeva A, Bekturova A, Fluhr R, Sagi M (2018) Early senescence in older leaves of low nitrate-grown Atxdh1 uncovers a role for purine catabolism in N supply. Plant Physiol 178:1027–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima S, Nomura M, Kouchi H (2004) Ureide biosynthesis in legume nodules. Front Biosci 9:1374–1381

    CAS  PubMed  Google Scholar 

  • Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H (2016) Allantoin, a stress-related purine metabolite, can activate jasmonate signalling in a MYC2-regulated and abscisic acid-dependent manner. J Exp Bot 67:2519–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Watanabe S, Tanaka S, Matsuura T, Mori IC, Hirayama T, Shimada H, Sakamoto A (2018) Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC Plant Biol 18:1–16

    Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    CAS  PubMed  Google Scholar 

  • Thornfeldt C (2005) Cosmeceuticals containing herbs: fact, fiction, and future. Dermat Surg 31:873–881

    CAS  Google Scholar 

  • Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC (2006) Update on ureide degradation in legumes. J Exp Bot 57(1):5–12

    CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    PubMed  PubMed Central  Google Scholar 

  • Ventura Y, Myrzabayeva M, Alikulov Z, Omarov R, Khozin-Goldberg I, Sagi M (2014) Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AoB Plants 6:1–11

    CAS  Google Scholar 

  • Wang P, Kong CH, Sun B, Xu XH (2012) Distribution and function of allantoin (5-ureidohydantoin) in rice grains. J Agri Food Chem 60:2793–2798

    CAS  Google Scholar 

  • Wang WS, Zhao XQ, Li M, Huang LY, Xu JL, Zhang F, Cui YR, Fu BY, Li ZK (2015) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot 67:405–419

    PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Ann Bot 111:1021–1058

  • Watanabe S, Nakagawa A, Izumi S, Shimada H, Sakamoto A (2010) RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis. FEBS Lett 584:1181–1186

    CAS  PubMed  Google Scholar 

  • Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A (2014) The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Env 37:1022–1036

    CAS  Google Scholar 

  • Watanabe S, Kounosu Y, Shimada H, Sakamoto A (2014) Arabidopsis xanthine dehydrogenase mutants defective in purine degradation show a compromised protective response to drought and oxidative stress. Plant Biotech 14:0117–0131

    Google Scholar 

  • Werner AK, Witte CP (2011) The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci 16:381–387

    CAS  PubMed  Google Scholar 

  • Yang XF, Li LL, Xu Y, Kong CH (2018) Kin recognition in rice (Oryza sativa) lines. New Phyto 220:567–578

    CAS  Google Scholar 

  • Yobi A, Wone BW, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6:369–385

    CAS  PubMed  Google Scholar 

  • You J, Zhang Y, Liu A, Li D, Wang X, Dossa K, Zhou R, Yu J, Zhang Y, Wang L, Zhang X (2019) Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol 19:267–283

    PubMed  PubMed Central  Google Scholar 

  • You S, Zhu B, Wang F, Han H, Sun M, Zhu H, Peng R, Yao Q (2017) A Vitis vinifera xanthine dehydrogenase gene, VvXDH, enhances salinity tolerance in transgenic Arabidopsis. Plant Biotech Rep 11:147–160

    Google Scholar 

Download references

Acknowledgements

We are grateful to Director, ICAR-NIPB for his support and valuable suggestions.

Funding

HK and SC received the financial support from DST-Inspire Faculty grant and Council of Scientific and Industrial Research, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Chowrasia, S., Gaur, V.S. et al. Allantoin: Emerging Role in Plant Abiotic Stress Tolerance. Plant Mol Biol Rep 39, 648–661 (2021). https://doi.org/10.1007/s11105-021-01280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-021-01280-z

Keywords

Navigation