Skip to main content
Log in

Atomic Relaxation and Vibration Properties of the Cu(111)–(√3 × √3)R30°–Cr Surface

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structural and vibration properties of the (√3 × √3)R30°–Cr adsorption structure on the Cu(111) surface and the Cu(111)–(√3 × √3)R30°–Cr two-dimensional alloy incorporated into the S – 1 substrate layer are studied using the tight binding approximation. Surface relaxation is discussed along with the dispersion of surface phonons and the local density of vibration states of adatoms and substrate atoms. It has been demonstrated that the presence of chromium atoms modifies the structural and vibration characteristics of the substrate and leads to the appearance of new phonon states in it. The analysis of the entire set of data has shown that the Cu(111)–(√3 × √3)R30°–Cr subsurface two-dimensional alloy is a more stable configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Lee Hyung, “Texture and morphology of sputtered Cr thin films,” J. Appl. Phys. 57, 4037–4039 (1985).

    Article  Google Scholar 

  2. D. Rouyer, C. Krembel, M. C. Hanf, D. Bolmont, and G. Gewinner, “Epitaxy of thin Cr layers on Cu(001),” Surf. Sci. 307–309, 477–482 (1994).

    Article  Google Scholar 

  3. J. F. Lawler, R. G. P. van der Kraan, H. van Kempen, and A. J. Quinn, “The growth of Cr on Cu(001) and Ag(001) studied by scanning tunneling microscopy,” J. Magn. Magn. Mater. 165, 195–198 (1997).

    Article  CAS  Google Scholar 

  4. T. P. Harzer, S. Djaziri, R. Raghavan, and G. Dehm, “Nanostructure and mechanical behavior of metastable Cu–Cr thin films grown by molecular beam epitaxy,” Acta Mater. 83, 318–332 (2015).

    Article  CAS  Google Scholar 

  5. W. Kimura, Y. Kume, M. Kobashi, and N. Kanetake, “Consolidation of Cr–Cu/Cu powder laminated material by compressive torsion processing,” Procedia Eng. 81, 1169–1174 (2014).

    Article  CAS  Google Scholar 

  6. P. C. Wo, N. Abdolrahim, Y. F. Zhu, I. N. Mastorakos, D. F. Bahr, and H. M. Zbib, “Precipitation strengthening in nanocomposite Cr/Cu–Cr multilayer films,” Philos. Mag. 95. 1780–1794 (2015).

    Article  CAS  Google Scholar 

  7. A. Markov, E. Yakovlev, D. Shepel, and M. Bestetti, “Synthesis of a Cr–Cu surface alloy using a low-energy high-current electron beam,” Res. Phys. 12, 1915–1924 (2019).

    Google Scholar 

  8. A. P. Payne and B. M. Clemens, “Cu–Cr multilayers and metastable alloy films,” MRS Proc. 187, 39–45 (1990).

  9. T. Asada, G. Bihlmayer, S. Handschuh, S. Heinze, Ph. Kurz, and S. Blügel, “First-principles theory of ultrathin magnetic films,” J. Phys.: Condens. Matter. 11, 9347–9363 (1999).

    CAS  Google Scholar 

  10. H. Tochihara and S. Mizuno, “Composite surface structures formed by restructuring-type adsorption of alkali-metals on fcc metals,” Prog. Surf. Sci. 58, 1–74 (1998).

    Article  CAS  Google Scholar 

  11. G. G. Rusina, S. D. Borisova, S. V. Eremeev, I. Yu. Sklyadneva, E. V. Chulkov, G. Benedek, and J. P. Toennies, “Surface Dynamics of the Wetting Layers and Ultrathin Films on a Dynamic Substrate: (0.5–4) ML Pb/Cu (111),” J. Phys. Chem. C 120, 22304–22317 (2016).

    Article  CAS  Google Scholar 

  12. S. D. Borisova, G. G. Rusina, S. V. Eremeev, G. Benedek, P. M. Echenique, I. Yu. Sklyadneva, and E. V. Chulkov, “Vibrations in submonolayer structures of Na on Cu(111),” Phys. Rev. B 74, 165412–165423 (2006).

    Article  Google Scholar 

  13. S. A. Nikolaev, V. G. Mazurenko, and A. N. Rudenko, “Influence of magnetic order on phonon spectra of multiferroic orthorhombic YMnO3,” Solid State Commun. 164, 16–21 (2013).

    Article  CAS  Google Scholar 

  14. A. Bergman, L. Nordstrom, A. Burlamaqui Klautau, S. Frota-Pessoa, and O. Eriksson, “Magnetic structures of small Fe, Mn, and Cr clusters supported on Cu(111): Noncollinear first principles calculations,” Phys. Rev. B 75, 224425–224435 (2007).

    Article  Google Scholar 

  15. C. Krembel, M. C. Hanf, J. C. Peruchetti, D. Bolmont, and G. Gewinner, “Electronic and magnetic structure of a Cr monolayer on Ag(100),” Phys. Rev. B 44, 11472–11481 (1991).

    Article  CAS  Google Scholar 

  16. F. Cleri and V. Rosato, “Tight binding potentials for transition metal alloys,” Phys. Rev. B 48, 22–33 (1993).

    Article  CAS  Google Scholar 

  17. R. A. Johnson, “Alloy models with the embedded-atom method,” Phys. Rev. B 39, 12554–12559 (1989).

    Article  CAS  Google Scholar 

  18. D. W. Heerman, Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1990), 2nd ed., p. 143.

    Book  Google Scholar 

  19. K. H. Chae, H. C. Lu, and T. Gustafsson, “Medium-energy ion-scattering study of the temperature dependence of the structure of Cu(111),” Phys. Rev. B 54, 14082–14086 (1996).

    Article  CAS  Google Scholar 

  20. M. H. Mohamed, L. L. Kesmodel, M. Burl Hall, and D. L. Mills, “Surface phonon dispersion on Cu(111),” Phys. Rev. B 37, 2763–2765 (1988).

    Article  CAS  Google Scholar 

  21. K.-P. Bohnen and K. M. Ho, “Structure and dynamic at metal surfaces,” Surf. Sci. Rep. 19, 99–120 (1993).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the Program of Fundamental Research of State Academies of Sciences for 2019-2021 (direction of studies no. III.23.2.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Borisova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, S.D., Rusina, G.G. Atomic Relaxation and Vibration Properties of the Cu(111)–(√3 × √3)R30°–Cr Surface. Phys. Metals Metallogr. 121, 1027–1032 (2020). https://doi.org/10.1134/S0031918X20110022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20110022

Keywords:

Navigation