Skip to main content
Log in

Crystallographic Analysis and Mechanism of Martensitic Transformation in Fe Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A new version of the crystallographic theory of martensitic transformation has been developed, where instead of Bain deformation, the deformation of the lattice was performed by a shear along the twinning system of crystals and an additional change in dimensions in three mutually perpendicular directions. In the proposed variant, the angle of relaxation rotation of martensite crystal was about 1.8°; in the standard phenomenological theory, it was 10°. The new version made it possible to establish the mechanism of lattice deformation upon martensitic transformation, to determine the angle of relaxation rotation, and to carry out crystallographic analysis of martensitic transformation in various alloys. The formation of crystals (laths) of dislocation martensite in medium-carbon steel was found to occur with redistribution of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Physical Metallurgy, Ed. by R. W. Cahn (Elsevier, Moscow, 1996), Vol. 2 [in Russian].

    Google Scholar 

  2. Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (Elsevier, Moscow, 1996) [in Russian].

    Google Scholar 

  3. G. V. Kurdyumov, Phenomena of Hardening and Tempering of Steel (Metallurgizdat, Moscow, 1960) [in Russian].

    Google Scholar 

  4. G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations of Iron in Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  5. S. S. Shteinberg, Fundamentals of Heat Treatment of Steel (Metallurgizdat, Moscow, 1945) [in Russian].

    Google Scholar 

  6. V. D. Sadovskii, Transformations of Supercooled Austenite (Atlas of Diagrams) (Metallurgizdat, Sverdlovsk, 1947) [in Russian].

    Google Scholar 

  7. I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  8. M. A. Smirnov, V. M. Schastlivtsev, and L. G. Zhuravlev, Fundamentals of Heat Treatment of Steels (UrBr RAS, Yekaterinburg, 1999) [in Russian].

    Google Scholar 

  9. L. V. Smirnov, E. N. Sokolkov, and V. D. Sadovskii, “Effect of plastic deformation in the austenitic state on brittleness during tempering of structural alloy steels,” Dokl. Akad. Nauk SSSR 103, 609–610 (1955).

    CAS  Google Scholar 

  10. M. L. Bernshtein, Thermomechanical Treatment of Metals and Alloys (Metallurgiya, Moscow, 1968) [in Russian].

    Google Scholar 

  11. M. L. Bernshtein, V. A. Zaimovskii, and L. M. Kaputkina, Thermomechanical Treatment of Steel (Metallurgiya, Moscow, 1983) [in Russian].

    Google Scholar 

  12. K. A. Malyshev, V. V. Sagaradze, I. P. Sorokin, N. D. Zemtsova, V. A. Teplov, and A. I. Uvarov, Phase hardening of austenitic Fe–Ni alloys (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  13. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (RIO UrBr RAS, Yekaterinburg, 2013) [in Russian].

    Google Scholar 

  14. G. V. Kurdyumov and L. G. Khandros, “On the thermoelastic equilibrium at martensitic transformations,” Dokl. Akad. Nauk SSSR 66, 211–221 (1949).

    CAS  Google Scholar 

  15. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Other Shape Memory Alloys (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  16. V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Izd-vo LGU, Leningrad, 1987) [in Russian].

    Google Scholar 

  17. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  18. E. C. Bain and N. Dunkirk, “The nature of martensite,” Trans. AIME 70, 25–46 (1924).

    Google Scholar 

  19. C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations (New York–London, 1964), p. 193.

    Google Scholar 

  20. Kh. Varlimont and D. Dilei, Martensitic Transformations in Alloys Based on Copper, Silver, and Gold (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  21. V. A. Lobodyuk and E. I. Estrin, Martensitic Transformations (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  22. G. Kurdyumov and G. Sachs, Z. Phys. 64, 325–343 (1930).

    Article  CAS  Google Scholar 

  23. A. B. Greninger and A. R. Trojano, “The mechanism of martensite formation,” Trans. AIME 185, 590–598 (1949).

    Google Scholar 

  24. M. S. Wechsler, D. S. Lieberman, and T. A. Read, “On the theory of the formation of martensite,” Trans. AIME 197, 1503–1515 (1953).

    Google Scholar 

  25. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Martensitic Transformation in Magnetic Field (UrO RAN, Yekaterinburg, 2007) [in Russian].

    Google Scholar 

  26. V. M. Schastlivtsev and V. I. Zel’dovich, Physical Fundamentals of Metal Science (Izd-vo UMTs UPI, Yekaterinburg, 2015) [in Russian].

  27. V. S. Boiko, R. I. Garber, and A. M. Kosevich, Inverse Plasticity of Crystals (Nauka, Fizmatlit, Moscow, 1991) [in Russian].

  28. V. M. Schastlivtsev, D. P. Rodionov, V. D. Sadovskii, and L. V. Smirnov, “Some structural features of quenched single crystals of structural steel grown from the melt,” Fiz. Met. Metalloved. 30, 1238–1244 (1970).

    CAS  Google Scholar 

  29. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Structure of Heat Treated Steel (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  30. V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the B2 → B19' martensite transformation in titanium nickelide,” Bull. Russ. Acad. Sci.: Phys. 76, No. 1, 18–22 (2012).

    Article  CAS  Google Scholar 

  31. V. M. Gundyrev and V. I. Zel’dovich, “Determining orientation relationships for the B2 → B19' transformation in single crystal titanium nickelide according to the texture of B19' martensite,” Bull. Russ. Acad. Sci.: Phys. 74, 1561–1569 (2010).

    Article  CAS  Google Scholar 

  32. V. Gundyrev and V. Zel’dovich, “About the mechanism of deformation at martensite transformation in the Fe–31 wt % Ni alloy,” Mater. Sci. Forum 738–739, 20–24 (2013).

    Article  CAS  Google Scholar 

  33. V. M. Gundyrev and V. I. Zeldovich, “Crystallographic analysis of martensitic transformation in an iron-nickel alloy with twinned martensite,” Bull. Russ. Acad. Sci.: Phys. 77, No. 11, 1367–1372 (2013).

    Article  CAS  Google Scholar 

  34. A. L. Roitburd and E. I. Estrin, “Martensitic transformations,” in Results of Science and Technology. Metal Science and Heat Treatment.1968 (VINITI, Moscow, 1970), pp. 5–102 [in Russian].

  35. Ya. S. Umanskii and Yu. A. Skakov, Physics of Metals (Atomizdat, Moscow, 1978).

    Google Scholar 

  36. D. A. Mirzaev, E. A. Kabliman, and A. A. Mirzoev, “Stability of the austenite lattice of a high-nickel iron-based alloy toward the martensitic transformation,” Phys. Met. Metallogr. 113, 774–778 (2012).

    Article  Google Scholar 

  37. V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the FCC → BCC martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115, No. 10, 973–980 (2014).

    Article  Google Scholar 

  38. Ya. S. Umansii, Yu. A. Skakov. A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-ray Radiography, and Electron Microscopy (Metallurgiya, Moscow, 1982)

    Google Scholar 

  39. A. G. Khachaturyan, “Carbon in martensite of steel,” in Imperfections in the Crystal Structure and Martensitic Transformations (Nauka, Moscow, 1972), pp. 34–45 [in Russian].

    Google Scholar 

  40. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite,” Phys. Met. Metallogr. 117, No. 10, 1017–1027 (2016).

    Article  CAS  Google Scholar 

  41. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “orientation relationship and the mechanism of martensite transformation in medium-carbon steel with batch martensite,” Bull. Russ. Acad. Sci.: Phys. 81, 1435–1441 (2017).

    Article  Google Scholar 

  42. Yu. G. Andreev, L. N. Devchenko, E. V. Shelekhov, and M. A. Shtremel’, “Packaging of martensite crystals in a pseudo-single crystal,” Dokl. Akad. Nauk SSSR 237, 574–576 (1977).

    CAS  Google Scholar 

  43. T. V. Eterashvili, L. M. Utevskii, and M. N. Spasskii, “Structure of packet martensite and localization of retained austenite in structural steel,” Fiz. Met. Metalloved. 48, 807–815 (1979).

    CAS  Google Scholar 

  44. K. Wakasa and C. M. Wayman, “The morphologyand crystallography of ferrous lath martensite. Studies of Fe–20% Ni–5% Mn. I. Optical microscopy. II. Transmission electron microscopy. III. Surface relief, the shape strain and related features,” Acta Metall. 29, No. 6, 973–990 (1981); 991–1011 (1981); 1013–1028 (1981).

  45. B. P. J. Sandvik and C. M. Wayman, “Characteristics of Lath Martensite: Part I. Crystallographic and Substructural Features. Part II. The Martensite–Austenite Interface. Part III. Some Theoretical Considerations,” Metall. Trans. A 14, 809–822 (1983); 823–834 (1983); 835–844 (1983).

  46. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Carbon distribution in the martensite structure of structural steel,” Dokl. Phys. 468, 215–217 (2016).

    Article  CAS  Google Scholar 

  47. J. F. Breedis and C. M. Wayman, “The martensitic transformation in Fe–31 wt % Ni,” Trans. Met. Soc. AIME224, 1128–1133 (1962).

    CAS  Google Scholar 

  48. G. R. Speich and K. A. Taylor, “Tempering of ferrous martensites,” pp. 241–275. Charter 13 in book Martensite, Ed. by G. B. Olson and W. S. Owen (ASM International, 1992), p. 331.

  49. I. A. Tananko, A. I. Makhatilova, and V. V. Belozerov, “On the nature of the inhomogeneity of martensite in hardened steel,” Fiz. Met. Metalloved. 56, 791–795 (1983).

    CAS  Google Scholar 

  50. D. P. Rodionov and V. M. Schastlivtsev, Steel Single Crystals (UrBr RAS, Yekaterinburg, 1996) [in Russian].

    Google Scholar 

  51. V. G. Gavrilyuk, Distribution of Carbon in Steel (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the State task according to the themes “Struktura” No. AAAAA18-118020190116-6 and “Davlenie” No. AAAA-A18-118020190104-3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Gundyrev or V. I. Zeldovich.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundyrev, V.M., Zeldovich, V.I. & Schastlivtsev, V.M. Crystallographic Analysis and Mechanism of Martensitic Transformation in Fe Alloys. Phys. Metals Metallogr. 121, 1045–1063 (2020). https://doi.org/10.1134/S0031918X20110046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20110046

Keywords:

Navigation