Skip to main content
Log in

Deformation Interactions in Polycrystalline Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Specificities of the theory of deformation interactions in polycrystalline alloys are discussed in this work. It is shown that, in the continuous approximation, these interactions are completely determined by the dilatation components of elastic and inelastic strain fields created by the systems of grain boundaries and the system of impurity atoms. Formulas and estimates for various types of deformation interactions are presented. Problems concerning the effect of the boundaries on the lattice parameters, the concentration expansion of the lattices of inhomogeneous alloys, and the interaction of grain boundaries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. G. Khachaturyan, Theory of Phase Transformations and Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. M. A. Krivoglaz, Theory of Scattering of X-rays and Thermal Neutrons in Real Crystals (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  3. A. A. Smirnov, Theory of Interstitial Alloys (Nauka, Moscow, 1979).

    Google Scholar 

  4. D. Eshelbi, Continual Theory of Dislocations (Inostrannaya Literatura, Moscow, 1963) [in Russian].

    Google Scholar 

  5. M. A. Shtremel’, Strength of Alloys. Chap. 2. Deformation (MISiS, Moscow, 1997) [in Russian].

  6. J. P. Hirth and J. Lothe Theory of Dislocations (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  7. L. S. Vasil’ev and S. L. Lomaev, “Excess volume in materials with dislocations,” Phys. Met. Metallogr. 120, No. 7, 709–715 (2019).

    Article  Google Scholar 

  8. L. S. Vasil’ev and S. L. Lomaev, “Influence of pressure on the processes of formation and evolution of the nanostructure in plastically deformed metals and alloys,” Phys. Met. Metallogr. 120, No. 6, 600–606 (2019).

    Article  Google Scholar 

  9. L. E. Karkina, I. N. Karkin, A. R. Kuznetsov, I. K. Razumov, P. A. Korzhavyi, and Yu. N. Gornostyrev, “Solute–grain boundary interaction and segregation formation in Al: First principles calculations and molecular dynamics modeling,” Comput. Mater. Sci. 112, 18–26 (2016).

    Article  CAS  Google Scholar 

  10. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransitional Phenomena and Martensitic Transformations (Ural Branch RAS, Yekaterinburg, 2020) [in Russian].

    Google Scholar 

  11. Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982).

    Google Scholar 

  12. L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  13. L. S. Vasil’ev and S. L. Lomaev, “Excess volume formation in single-component nanocrystalline materials,” Fiz. Mezomekh. 20, No. 2, 50–60 (2017).

    Google Scholar 

  14. K. Lu and Y. H. Zhao, “Experimental evidences of lattice distortion in Nanocrystalline Materials: 1–4,” Nanostruct. Mater. 12, No. 1–4, 559–562 (1999).

    Article  Google Scholar 

  15. J. Sheng, G. Rane, U. Welzel, and E. J. Mittemeijer, “The lattice parameter of nanocrystalline Ni as function of crystallite size,” Phys. E 43, No. 6, 1155–1161 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within research projects nos. АААА-А17-117022250038-7 and АААА-А18-118020190104-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Vasil’ev.

Additional information

Translated by E. Chernokozhin

APPENDIX

APPENDIX

EXCESS VOLUME OF BOUNDARIES

Let us consider the excess volume density distribution \({{\varepsilon }_{{0V}}}({\mathbf{r}})\) for a single unrelaxed plane special boundary with the tilt {n10}, \(\left| n \right| \geqslant 2\) (Fig. 1а) [13]. The boundary connects crystallites K1 and K2 along the planes A1 and A2. In Fig. 1b, the shaded square abcd shows the volume occupied by an atom in an ideal lattice. Therefore, the broken line \({{y}_{1}}(x)\) is the upper boundary of crystallite K1 and the line \({{y}_{2}}(x)\) is the lower boundary of crystallite K2 (Fig. 1c). Hence, the distribution of excess volume per 1 m2 of the boundary is determined by the difference

$$\Delta V(x) = {{y}_{2}}(x) - {{y}_{1}}(x).$$
(55)

From definition (16), we find

$${{\varepsilon }_{{0V}}}(x) = {{\Delta V(x)} \mathord{\left/ {\vphantom {{\Delta V(x)} H}} \right. \kern-0em} H}.$$
(56)

Here, H is the width of the zone of irreversible volume changes. The form of functions \({{y}_{1}}(x)\) and \({{y}_{2}}(x)\) on the length of the period l for boundaries with an inclination angle θ and a relative displacement of crystallites by an arbitrary vector \({\mathbf{d}} = \{ {{x}_{0}},{{y}_{0}}\} \) (y0 is the distance between planes A1 and A2, Fig. 1a) is determined by the formulas (see Figs. 1b and 1c):

$$\begin{gathered} {{y}_{2}}(x) = h + {{y}_{1}}({{x}_{0}} - x),\,\,{{h}_{1}} = 2{{m}_{1}} = 2{{m}_{2}} = a{\text{sin}}(\theta {\text{/}}2), \\ {{x}_{1}} = a{\text{/}}2\sin (\theta {\text{/}}2),\,\,\theta = 2\arctan (1{\text{/}}n), \\ \end{gathered} $$
(57)
$${{y}_{1}}(x) = \left\{ \begin{gathered} (x + {{x}_{1}})\cot (\theta {\text{/}}2),\,\,\,\,0 \leqslant x < {{x}_{1}}; \hfill \\ (l - {{x}_{1}} - x)\tan (\theta {\text{/}}2),\,\,\,\,{{x}_{1}} \leqslant x < l - {{x}_{1}}; \hfill \\ (x - l)\cot (\theta {\text{/}}2),\,\,\,\,l - {{x}_{1}} \leqslant x \leqslant l. \hfill \\ \end{gathered} \right\}$$
(58)

Here, \({{\varepsilon }_{0}} = h\) is the mean excess volume per 1 m2 of the unrelaxed boundary (see Fig. 1c) [13].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, L.S., Lomaev, I.L. & Lomaev, S.L. Deformation Interactions in Polycrystalline Alloys. Phys. Metals Metallogr. 121, 1097–1104 (2020). https://doi.org/10.1134/S0031918X20110095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20110095

Keywords:

Navigation