Skip to main content

Advertisement

Log in

Design and synthesis of newer N-benzimidazol-2yl benzamide analogues as allosteric activators of human glucokinase

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Allosteric activators of human glucokinase (GK) had revealed significant hypoglycemic effects for therapy of type-2 diabetes (T2D) in animal as well as human models. Some newer N-benzimidazol-2yl substituted benzamide analogues were prepared and assessed for activation of GK accompanied by molecular docking investigations for predicting the bonding interactions of these derivatives with the residues in allosteric site of GK protein. Amongst the derivatives synthesized, compounds 2 and 7 strongly increased catalytic action of GK (GK activation fold >2.0 in comparison to control) in vitro. The results of in-vitro testing were supported by the molecular docking investigations of these analogues with GK protein’s allosteric site residues (showed appreciable H-bond interactions with Arg63 residue of GK). Derivatives investigated in present study afforded few lead compounds for the discovery of harmless and strong allosteric GK activating compounds for treating T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kohei K. Pathophysiology of type 2 diabetes and its treatment policy. Jpn Med Assoc J. 2010;53:41–46.

    Google Scholar 

  2. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27:269–273. https://doi.org/10.5001/omj.2012.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pr. 2014;103:150–160. https://doi.org/10.1016/j.diabres.2013.11.001

    Article  Google Scholar 

  4. Pal M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Disco Today. 2009;14:784–792. https://doi.org/10.1016/j.drudis.2009.05.013

    Article  CAS  Google Scholar 

  5. Grewal AS, Beniwal M, Pandita D, Sekhon BS, Lather M. Recent updates on peroxisome proliferator-activated receptor δ agonists for the treatment of metabolic syndrome. Med Chem. 2016;12:03–21. https://doi.org/10.2174/1573406411666150525105826

    Article  CAS  Google Scholar 

  6. Grewal AS, Sekhon BS, Lather V. Recent updates on glucokinase activators for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem. 2014;14:585–602. https://doi.org/10.2174/1389557514666140722082713

    Article  CAS  PubMed  Google Scholar 

  7. Grewal AS, Bhardwaj S, Pandita D, Lather V, Sekhon BS. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem. 2016;16:120–162. https://doi.org/10.2174/1389557515666150909143737

    Article  CAS  PubMed  Google Scholar 

  8. Pal M. Medicinal chemistry approaches for glucokinase activation to treat type 2 diabetes. Curr Med Chem. 2009;16:3858–3874. https://doi.org/10.2174/092986709789177993

    Article  CAS  PubMed  Google Scholar 

  9. Coghlan M, Leighton B. Glucokinase activators in diabetes management. Expert Opin Investig Drugs. 2008;17:145–167. https://doi.org/10.1517/13543784.17.2.145

    Article  CAS  PubMed  Google Scholar 

  10. Perseghin G. Exploring the in vivo mechanisms of action of glucokinase activators in type 2 diabetes. J Clin Endocrinol Metab. 2010;95:4871–4873. https://doi.org/10.1210/jc.2010-2049

    Article  CAS  PubMed  Google Scholar 

  11. Matschinsky FM, Zelent B, Doliba N, Li C, Vanderkooi JM, Naji A, et al. Glucokinase activators for diabetes therapy. Diabetes Care. 2011;34:S236–43. https://doi.org/10.2337/dc11-s236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grewal AS, Lather V, Charaya N, Sharma N, Singh S, Kairys V. Recent developments in medicinal chemistry of allosteric activators of human glucokinase for type 2 diabetes mellitus therapeutics. Curr Pharm Des. 2020;26:2510–2552. https://doi.org/10.2174/1381612826666200414163148

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Li H, Zhu Q, Liu J, Chen L, Leng Y, et al. Benzamide derivatives as dual-action hypoglycemic agents that inhibit glycogen phosphorylase and activate glucokinase. Bioorg Med Chem. 2009;17:7301–7312. https://doi.org/10.1016/j.bmc.2009.08.045

    Article  CAS  PubMed  Google Scholar 

  14. Pike KG, Allen JV, Caulkett PWR, Clarke DS, Donald CS, Fenwick ML, et al. Design of a potent, soluble glucokinase activator with increased pharmacokinetic half-life. Bioorg Med Chem Lett. 2011;21:3467–3470. https://doi.org/10.1016/j.bmcl.2011.03.093

    Article  CAS  PubMed  Google Scholar 

  15. Ericsson H, Sjoberg F, Heijer M, Dorani H, Johansson P, Wollbratt M, et al. The glucokinase activator AZD6370 decreases fasting and postprandial glucose in type 2 diabetes mellitus patients with effects influenced by dosing regimen and food. Diabetes Res Clin Pr. 2012;98:436–444. https://doi.org/10.1016/j.diabres.2012.09.025

    Article  CAS  Google Scholar 

  16. Bowler JM, Hervert KL, Kearley ML, Miller BG. Small-molecule allosteric activation of human glucokinase in the absence of glucose. ACS Med Chem Lett. 2013;4:580–584. https://doi.org/10.1021/ml400061x

    Article  CAS  PubMed Central  Google Scholar 

  17. Sjostrand M, Ericsson H, Hartford M, Norjavaara E, Eriksson JW. Pharmacodynamic effects of the oral glucokinase activator AZD6370 after single doses in healthy volunteers assessed with euglycaemic clamp. Diabetes Obes Metab. 2013;15:35–41. https://doi.org/10.1111/j.1463-1326.2012.01672.x

    Article  CAS  PubMed  Google Scholar 

  18. Park K, Lee BM, Kim YH, Han T, Yi W, Lee DH, et al. Discovery of a novel phenylethyl benzamide glucokinase activator for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett. 2013;23:537–542. https://doi.org/10.1016/j.bmcl.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  19. Park K, Lee BM, Hyun KH, Lee DH, Choi HH, Kim H. et al. Discovery of 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methylpyridin-2-yl)-benzamide as a novel glucokinase activator (GKA) for the treatment of type 2 diabetes mellitus. Bioorg Med Chem. 2014;22:2280–93. https://doi.org/10.1016/j.bmc.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  20. Lei L, Liu Q, Liu S, Huan Y, Sun S, Chen Z, et al. Antidiabetic potential of a novel dual-target activator of glucokinase and peroxisome proliferator activated receptor-γ. Metab Clin Exp. 2015;64:1250–1261. https://doi.org/10.1016/j.metabol.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Shi X, Zhang H, Yu L, Cheng Y, Zhang H, et al. Discovery of cycloalkyl-fused N-thiazol-2-yl-benzamides as tissue non-specific glucokinase activators: design, synthesis, and biological evaluation. Eur J Med Chem. 2017;139:128–152. https://doi.org/10.1016/j.ejmech.2017.07.051

    Article  CAS  PubMed  Google Scholar 

  22. Charaya N, Pandita D, Grewal AS, Lather V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput Biol Chem. 2018;73:221–229. https://doi.org/10.1016/j.compbiolchem.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  23. McKerrecher D, Steven A. Design and development of the glucokinase activator AZD1656. In: Abdel-Magid AF, Pesti JA, Vaidyanathan R, (eds.) Complete Accounts of Integrated Drug Discovery and Development: Recent Examples from the Pharmaceutical Industry. Washington: American Chemical Society; 2018. https://doi.org/10.1021/bk-2018-1307.ch007

  24. Grewal AS, Kharb R, Prasad DN, Dua JS, Lather V. N-Pyridin-2-yl benzamide analogues as allosteric activators of glucokinase: design, synthesis, in vitro, in silico and in vivo evaluation. Chem Biol Drug Des. 2019;93:364–372. https://doi.org/10.1111/cbdd.13423

    Article  CAS  PubMed  Google Scholar 

  25. Grewal AS, Dua JS, Prasad DN, Kharb R, Lather V. Design, synthesis and evaluation of novel 3,5-disubstituted benzamide derivatives as allosteric glucokinase activators. BMC Chem. 2019;13:2 https://doi.org/10.1186/s13065-019-0532-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grewal AS, Kharb R, Dua JS, Lather V. Molecular docking assessment of N-heteroaryl substituted benzamide derivatives as glucokinase activators. Asian J Pharm Pharm. 2019;5:129–136. https://doi.org/10.31024/ajpp.2019.5.1.18

    Article  CAS  Google Scholar 

  27. Grewal AS, Arora S, Sharma N, Singh S. In silico docking studies of compounds from Persian shallot as allosteric glucokinase activators. Plant Arch. 2020;20:3768–3771.

    Google Scholar 

  28. Singh R, Lather V, Pandita D, Judge V, Arumugam KN, Grewal AS. Synthesis, docking and antidiabetic activity of some newer benzamide derivatives as potential glucokinase activators. Lett Drug Des Discov. 2017;14:540–553. https://doi.org/10.2174/1570180813666160819125342

    Article  CAS  Google Scholar 

  29. Grewal AS, Lather V, Pandita D, Bhayana G. Synthesis, docking and evaluation of phenylacetic acid and trifluoromethylphenyl substituted benzamide derivatives as potential PPARδ agonists. Lett Drug Des Discov. 2017;14:1239–1251. https://doi.org/10.2174/1570180814666170327164443

    Article  CAS  Google Scholar 

  30. Chauhan A, Grewal AS, Pandita D, Lather V. Novel cinnamic acid derivatives as potential PPARδ agonists for metabolic syndrome: design, synthesis, evaluation and docking studies. Curr Drug Disco Technol. 2020;17:338–347. https://doi.org/10.2174/1570163816666190314124543

    Article  CAS  Google Scholar 

  31. Miteva M, Violas S, Montes M, Gomez D, Tuffery P, Villoutreix B. FAF-Drugs: free ADME/Tox filtering of compound collections. Nucl Acids Res. 2006;34:W738–44. https://doi.org/10.1093/nar/gkl065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lagorce D, Bouslama L, Becot J, Miteva MA, Villoutreix BO. FAF-Drugs4: Free ADME-Tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics. 2017;33:3658–3660. https://doi.org/10.1093/bioinformatics/btx491

    Article  CAS  PubMed  Google Scholar 

  33. Efanov AM, Barrett DG, Brenner MB, Briggs SL, Delaunois A, Durbin JD, et al. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology. 2005;146:3696–3701. https://doi.org/10.1210/en.2005-0377

    Article  CAS  PubMed  Google Scholar 

  34. Futamura M, Hosaka H, Kadotani A, Shimazaki H, Sasaki K, Ohyama S, et al. An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism. J Biol Chem. 2006;281:37668–37674. https://doi.org/10.1074/jbc.M605186200

    Article  CAS  PubMed  Google Scholar 

  35. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem. 2009;30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miteva M, Guyon F, Tufféry P. Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucl Acids Res. 38:W622-7. https://doi.org/10.1093/nar/gkq325

  38. Rathee D, Grewal AS, Dureja H, Lather V. Enzymatic inhibitory activity of iridoid glycosides from Picrorrhiza kurroa against matrix metalloproteinases: correlating in vitro targeted screening and docking. Comput Biol Chem. 2019;78:28–36. https://doi.org/10.1016/j.compbiolchem.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  39. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salgueiro A, Folmer V, da Rosa H, Costa M, Boligon A, Paula F, et al. In vitro and in silico antioxidant and toxicological activities of achyrocline satureioides. J Ethnopharmacol. 2016;194:6–14. https://doi.org/10.1016/j.jep.2016.08.048

    Article  CAS  PubMed  Google Scholar 

  41. Pires DE, Kaminskas LM, Ascher DB. Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. Methods Mol Biol. 2018;1762:271–284. https://doi.org/10.1007/978-1-4939-7756-7_14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chitkara College of Pharmacy, Chitkara University, Punjab for their support and encouragement for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajmer Singh Grewal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Arora, S., Dhalio, E. et al. Design and synthesis of newer N-benzimidazol-2yl benzamide analogues as allosteric activators of human glucokinase. Med Chem Res 30, 760–770 (2021). https://doi.org/10.1007/s00044-020-02697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02697-z

Keywords

Navigation