Skip to main content
Log in

A new stress-updating algorithm for viscoplasticity

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Material behavior beyond the elastic limit can be rate-dependent, and this rate sensitivity can be captured by the viscoplastic material models. To describe the viscoplastic material behavior in structural analysis, an efficient numerical framework is necessary. In this paper an algorithm is proposed for metals for which von Mises yield surface along with Perić’s viscoplastic model is employed. The efficiency and accuracy of the technique is examined by comparison with different numerical studies. The convergence rate of the proposed algorithm is investigated. Characteristics of the viscoplastic behavior such as relaxation are illustrated in the selected case studies. Finally, application of the algorithm in practice is demonstrated by a boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Achour, N., Chatzigeorgiou, G., Meraghni, F., Chemisky, Y., Fitoussi, J.: Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers. Int. J. Mech. Sci. 103, 295–307 (2015)

    Article  Google Scholar 

  • Alfano, G., De Angelis, F., Rosati, L.: General solution procedures in elasto/viscoplasticity. Comput. Methods Appl. Mech. Eng. 190(39), 5123–5147 (2001)

    Article  MATH  Google Scholar 

  • Aliguer, I., Carol, I., Sture, S.: Stress-driven integration strategies and m-AGC tangent operator for Perzyna viscoplasticity and viscoplastic relaxation: application to geomechanical interfaces. Int. J. Numer. Anal. Methods Geomech. 41, 918–939 (2017)

    Article  Google Scholar 

  • Artioli, E., Auricchio, F., Beirão da Veiga, L.: Integration schemes for von Mises plasticity models based on exponential maps: numerical investigations and theoretical considerations. Int. J. Numer. Methods Biomed. Eng. 64, 1133–1165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Artioli, E., Auricchio, F., Beirão da Veiga, L.: A novel ‘optimal’ exponential-based integration algorithm for von Mises plasticity with linear hardening: theoretical analysis on yield consistency, accuracy, convergence and numerical investigations. Int. J. Numer. Methods Biomed. Eng. 67(4), 449–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Artioli, E., Auricchio, F., Beirão da Veiga, L.: Second-order accurate integration algorithms for von Mises plasticity with a nonlinear kinematic hardening mechanism. Comput. Methods Appl. Mech. Eng. 196, 1827–1846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Auricchio, F., Beirão da Veiga, L.: On a new integration scheme for von Mises plasticity with linear hardening. Int. J. Numer. Methods Biomed. Eng. 56, 1375–1396 (2003)

    Article  MATH  Google Scholar 

  • Badnava, H., Etemadi, E., Msekh, M.A.: A phase field model for rate-dependent ductile fracture. Metals 7, 180 (2017)

    Article  Google Scholar 

  • Chen, J-F., Morozov, E.V.: A consistency elasto-viscoplastic damage model for progressive failure analysis of composite laminates subjected to various strain rate loadings. Compos. Struct. 148, 224–235 (2016)

    Article  Google Scholar 

  • Covezzi, F., de Miranda, S., Marfia, S., Sacco, E.: Homogenization of elastic-viscoplastic composites by the mixed TFA. Comput. Methods Appl. Mech. Eng. 318, 701–723 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • de Souza Neto, E.A., Perić, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley, New York (2008)

    Book  Google Scholar 

  • Dodds, R.H.: Numerical techniques for plasticity computations in finite element analysis. Comput. Struct. 26(5), 767–779 (1987)

    Article  MATH  Google Scholar 

  • Fang, J., Wu, C., Liu, Q., Sun, G., Li, Q.: Implicit integration of the unified yield criterion in the principal stress space. J. Eng. Mech. 145(7), 1–14 (2019)

    Google Scholar 

  • Genna, F., Pandolfi, A.: Accurate numerical integration of Drucker–Prager’s constitutive equations. Meccanica 29, 239–260 (1994)

    Article  MATH  Google Scholar 

  • Haji Aghajanpour, N., Sharifian, M., Sharifian, M.: An efficient method for integrating von Mises plasticity with mixed hardening. Iran. J. Sci. Technol. Trans. Mech. Eng. 44, 47–59 (2020)

    Article  Google Scholar 

  • Heeres, O.M., Suiker, A.S.J., de Borst, R.: A comparison between the Perzyna viscoplastic model and the Consistency viscoplastic model. Eur. J. Mech. A, Solids 21, 1–12 (2002)

    Article  MATH  Google Scholar 

  • Hong, H-K., Liu, C-S.: Internal symmetry in bilinear elastoplasticity. Int. J. Non-Linear Mech. 34, 279–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hong, H-K., Liu, C-S.: Internal symmetry in the constitutive model of perfect elasto-plasticity. Int. J. Non-Linear Mech. 35, 447–466 (2000)

    Article  MATH  Google Scholar 

  • Hong, H-K., Liu, C-S.: Lorentz group on Minkowski spacetime for construction of the two basic principles of plasticity. Int. J. Non-Linear Mech. 36, 679–686 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hornberger, K., Stamm, H.: An implicit integration algorithm with a projection method for viscoplastic constitutive equations. Int. J. Numer. Methods Biomed. Eng. 28, 2397–2421 (1989)

    Article  MATH  Google Scholar 

  • Johnsen, J., Clausen, A.H., Grytten, F., Benallal, A., Hopperstad, O.S.: A thermo-elasto-viscoplastic constitutive model for polymers. J. Mech. Phys. Solids 124, 681–701 (2019)

    Article  MathSciNet  Google Scholar 

  • Kim, J., Kim, D.-N.: Robust stress integration algorithms for implicit elsatoviscoplastic finite element analysis of materials with yield-point phenomenon. Int. J. Mech. Sci. 150, 277–289 (2019)

    Article  Google Scholar 

  • Kindrachuk, V.M., Unger, J.F.: A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration. Int. J. Fatigue 100, 215–228 (2017)

    Article  Google Scholar 

  • Kobayashi, M., Ohno, N.: Implementation of cyclic plasticity models based on a general form of kinematic hardening. Int. J. Numer. Methods Biomed. Eng. 53, 2217–2238 (2002)

    Article  MATH  Google Scholar 

  • Kobayashi, M., Mukai, M., Takahashi, H., Ohno, N., Kawakami, T., Ishikawa, T.: Implicit integration and consistent tangent modulus of a time-dependent non-unified constitutive model. Int. J. Numer. Methods Biomed. Eng. 58, 1523–1543 (2003)

    Article  MATH  Google Scholar 

  • Krieg, R.D., Krieg, D.B.: Accuracies of numerical solution methods for the elastic-perfectly plastic model. J. Press. Vessel Technol. 99, 510–515 (1977)

    Article  Google Scholar 

  • Lee, J.-H., Ryu, D.-M., Lee, C.-S.: Constitutive-damage modeling and computational implementation for simulation of elasto-viscoplastic-damage behavior of polymeric foams over a wide range of strain rates and temperatures. Int. J. Plast. 130, 1–25 (2020)

    Article  Google Scholar 

  • Liu, C-S.: Internal Symmetry groups for the Drucker–Prager material model of plasticity and numerical integrating methods. Int. J. Solids Struct. 41, 3771–3791 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Loret, B., Prevost, J.H.: Accurate numerical solutions for Drucker-Prager elastic-plastic models. Comput. Methods Appl. Mech. Eng. 54, 259–277 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Marinelli, F., Buscarnera, G.: A Generalized Backward Euler algorithm for the numerical integration of a viscous breakage model. Int. J. Numer. Anal. Methods Geomech. 43, 3–29 (2019)

    Article  Google Scholar 

  • Mirkhalaf, S.M., Andrade Pires, F.M., Simoes, R.: An elasto-viscoplastic constitutive model for polymers at finite strains: formulation and computational aspects. Comput. Struct. 166, 60–74 (2016)

    Article  Google Scholar 

  • Nguyen, C.U., Ibrahimbegovic, A.: Visco-plasticity stress-based solid dynamics formulation and time-stepping algorithms for stiff case. Int. J. Solids Struct. 196–197, 154–170 (2020)

    Article  Google Scholar 

  • Ohno, N., Tsuda, M., Sugiyama, H., Okumura, D.: Elastic–viscoplastic implicit integration algorithm applicable to both plane stress and three-dimensional stress states. Finite Elem. Anal. Des. 109, 54–64 (2016)

    Article  Google Scholar 

  • Ortiz, M., Popov, E.P.: Accuracy and stability of integration algorithms for elasto-plastic constitutive relations. Int. J. Numer. Methods Eng. 21, 1561–1576 (1985)

    Article  MATH  Google Scholar 

  • Perić, D.: On a class of constitutive equations in viscoplasticity: formulation and computational issues. Int. J. Numer. Methods Eng. 36, 1365–1393 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Nasirai, C.: Accurate integration scheme for von Mises plasticity with mixed-hardening based on exponential maps. Eng. Comput. 24(6), 608–635 (2007)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Nasirai, C.: On the integration schemes for Drucker–Prager’s elasto-plastic models based on exponential maps. Int. J. Numer. Methods Eng. 74, 799–826 (2008)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M.: A novel formulation for integrating nonlinear kinematic hardening Drucker–Prager’s yield condition. Eur. J. Mech. A, Solids 31, 163–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Nasirai, C., Sharifian, M.: Application of exponential-based methods in integrating the constitutive equations with multicomponent nonlinear kinematic hardening. J. Eng. Mech. 136(12), 1502–1518 (2010)

    Google Scholar 

  • Rezaiee-Pajand, M., Nasirai, C., Sharifian, M.: Integration of nonlinear mixed hardening models. Multidiscip. Model. Mater. Struct. 7(3), 266–305 (2011a)

    Article  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M., Sharifian, M.: Accurate and approximate integrations of Drucker-Prager plasticity with linear isotropic and kinematic hardening. Eur. J. Mech. A, Solids 30, 345–361 (2011b)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M., Sharifian, M.: Integrating the pressure-sensitive nonassociative plasticity by exponential-based methods. J. Eng. Mater. Technol. 135(3), 1–22 (2013a)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M., Sharifian, M.: Two new hybrid methods in integrating the constitutive equations. Int. J. Mech. Sci. 77, 277–300 (2013b)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Auricchio, F., Sharifian, M., Sharifian, M.: Computational plasticity of mixed hardening pressure-dependency constitutive equations. Acta Mech. 225(6), 1699–1733 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Sharifian, M., Sharifian, M.: Angles based integration for generalized non-linear plasticity model. Int. J. Mech. Sci. 87, 241–257 (2014b)

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand, M., Auricchio, F., Sharifian, M., Sharifian, M.: Exponential-based integration for Bigonie–Piccolroaz plasticity model. Eur. J. Mech. A, Solids 51, 107–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Saleeb, A.F., Wilt, T.E., Li, W.: Robust integration schemes for generalized viscoplasticity with internal-state variables. Comput. Struct. 74, 601–628 (2000)

    Article  Google Scholar 

  • Sharifian, M., Sharifian, M., Sharifian, M.: Nonlinear elastoplastic analysis of pressure sensitive materials. Int. J. Mech. Mater. Des. 14, 329–344 (2018a)

    Article  MATH  Google Scholar 

  • Sharifian, M., Sharifian, M., Krysl, P., Sharifian, M.: Stress-update algorithms for Bigoni–Piccolroaz yield criterion coupled with a generalized function of kinematic hardening laws. Eur. J. Mech. A, Solids 67, 1–17 (2018b)

    Article  MathSciNet  MATH  Google Scholar 

  • Shutov, A.V.: Efficient implicit integration for finite-strain viscoplasticity with a nested multiplicative split. Comput. Methods Appl. Mech. Eng. 306, 151–174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elasto-plasticity. Int. J. Numer. Methods Eng. 22, 649–670 (1986)

    Article  MATH  Google Scholar 

  • Sloan, S.W., Booker, J.R.: Integration of Tresca and Mohr–Coulomb constitutive relations in plane strain elasto-plasticity. Int. J. Numer. Methods Eng. 33, 163–196 (1992)

    Article  MATH  Google Scholar 

  • Sloan, S.W., Abbo, A.J., Sheng, D.: Refined explicit integration of elasto-plastic models with automatic error control. Eng. Comput. 18(1/2), 121–154 (2001)

    Article  MATH  Google Scholar 

  • Tavoosi, M., Sharifian, M., Sharifian, M.: Updating stress and the related elastoplastic parameters for Lemaitre damage model. Iran. J. Sci. Technol. Trans. Mech. Eng. 44(4), 1–13 (2019)

    Google Scholar 

  • Wallin, M., Ristinmaa, M.: Accurate stress updating algorithm based on constant strain rate assumption. Comput. Methods Appl. Mech. Eng. 190, 5583–5601 (2001)

    Article  MATH  Google Scholar 

  • Wei, Z., Perić, D., Owen, D.R.J.: Consistent linearization for the exact stress update of Prandtl–Reuss non-hardening elasto-plastic models. Int. J. Numer. Methods Eng. 39, 1219–1235 (1996)

    Article  MATH  Google Scholar 

  • Wilkins, M.L.: Calculation of elastic-plastic flow. In: Method of Computational Physics, vol. 3. Academic Press, San Diego (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Sharifian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifian, M., Sharifian, M. A new stress-updating algorithm for viscoplasticity. Mech Time-Depend Mater 26, 235–256 (2022). https://doi.org/10.1007/s11043-021-09485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09485-1

Keywords

Navigation