Skip to main content
Log in

Investigation of structural, optical, and magnetic properties of Co2+ ions substituted CuFe2O4 spinel ferrite nanoparticles prepared via precipitation approach

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nanoparticles of undoped and cobalt-doped copper ferrite Cu1-xCoxFe2O4 (x = 0.2, 0.4, 0.6, 0.8, and 1.0) were successfully synthesized by a co-precipitation method. The influence of Co2+ substitutions on the structure, morphological, optical, and magnetic properties of Cu1-xCoxFe2O4 nanoferrites was studied. The crystallite size found by XRD increased from ∼ 10 to∼ 25 nm. The lattice parameter increased from 8.332 to 8.371 Å with increasing the Co2+ content. The FTIR spectra of Cu1-xCoxFe2O4 display two strong absorption bands in the range of 400–200 cm−1. The band gap energy of nanoferrites is found to decrease from 3.65 to 3.20 eV with an increase in the content of Co2+ ions. It has been observed that the luminescence intensity decreases in copper ferrite matrices with an increase in the ratio of Co2+. The results show the magnetic properties of copper ferrite are significantly affected by the doping amount of Co2+ ions. The saturation magnetization increases with increasing cobalt ion concentration as indicated in the M-H loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rodrigues, A.R.O., et al.: Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs. RSC Adv. 6(21), 17302–17313 (2016)

    Article  CAS  Google Scholar 

  2. Gupta, A.K., et al., Recent advances on surface engineering. Future Midicine. 2, 2 (2007)

  3. Mohseni, H., et al.: Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process. J. Magn. Magn. Mater. 324, 3741–3747 (2012)

    Article  CAS  Google Scholar 

  4. Somvanshi, S.B., et al.: Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications. Ceram. Int. 46, 7642–7653 (2020)

    Article  CAS  Google Scholar 

  5. Mohapatra, J., et al., Surface controlled synthesis of MFe2O 4 (M= Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics. Cryst. Eng. Commun., 15 (2013) 524–532

  6. Patade, S.R., et al.: Preparation and characterizations of magnetic nanofluid of zinc ferrite for hyperthermia application. Nano Energy. 9, 1–7 (2020)

    Google Scholar 

  7. Kale, S.B., et al.: Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application. In: AIP Conference Proceedings. AIP Publishing LLC (2018)

  8. Somvanshi, S.B., et al.: Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications. In: AIP Conference Proceedings. AIP Publishing LLC (2019)

  9. Somvanshi, S.B., et al.: Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46, 8640–8650 (2020)

    Article  CAS  Google Scholar 

  10. Bharati, V., et al.: Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J. Alloys Compd. 821, 153501 (2020)

    Article  CAS  Google Scholar 

  11. Manikandan, A., Judith Vijaya, J., John Kennedy, L.: Phys. E. 49, 117–123 (2013)

    Article  CAS  Google Scholar 

  12. Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Bappi, P., Sankar Dhar, S., Habibi-Yangjeh, A., Manikandan, A., Ramadoss, G.: J. Colloid Interface Sci. 498, 449–459 (2017)

    Article  CAS  Google Scholar 

  13. Asiri, S., Sertkol, M., Guner, S., Gungunes, H., Batoo, K.M., Saleh, T.A., Sozeri, H., Almessiere, M.A., Manikandan, A., Baykal, A.: Ceram. Int. 44, 5751–5759 (2018)

    Article  CAS  Google Scholar 

  14. Mathubala, G., Manikandan, A., Arul Antony, S., Ramar, P.: Nanosci. Nanotechnol. Lett. 8, 375–381 (2016)

    Article  Google Scholar 

  15. W. Bayoumi, J. Mater. Sci., 2007, 42, 8254–8261. 18 N. M. Deraz and A. Alari, J. Anal. Appl. Pyrolysis, 94 (2012) 41–47

  16. Silambarasu, A., Manikandan, A., Balakrishman, K., Supercond, J.: Novel Magn. 30, 2631–2640 (2017)

    Article  CAS  Google Scholar 

  17. Ravichandran, A.T., Srinivas, J., Karthick, R., Manikandan, A., Baykal, A.: Ceram. Int. 44, 13247–13252 (2018)

    Article  CAS  Google Scholar 

  18. Rajmohan, S., Jeseentharani, V., Manikandan, A., Pragasam, J.: Nanosci. Nanotechnol. Lett. 8, 393–398 (2016)

    Article  Google Scholar 

  19. Schmitz-Antoniak, C., et al.: Electric in-plane polarization in multiferroic CoFe2O4/BaTiO3 nanocomposite tuned by magnetic fields. Nat. Commun. 4, 2051 (2013)

    Article  Google Scholar 

  20. Mathew, D.S.: Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51–65 (2007)

    Article  CAS  Google Scholar 

  21. Hashim, M., Shirsath, S.E.: Meena, Study of structural and magnetic properties of (Co–Cu)Fe2O4/PANI composites. Mater. Chem. Phys. 141, 406–415 (2013)

    Article  CAS  Google Scholar 

  22. Jnaneshwara, D.M., Avadhani, D.N., Daruka Prasad, B., Nagabhushana, H., Nagabhushana, B.M., Sharma, S.C., Prashantha, S.C., Shivakumara, C.: Spectrochim. Acta, Part A. 132, 256–262 (2014)

    Article  CAS  Google Scholar 

  23. Bammannavar, B.K., Naik, L.R., Pujar, R.B.: Prog. Electromagnet. Res. Lett. 4, 121–129 (2008)

    Article  Google Scholar 

  24. Balavijayalakshmi, J., Suriyanarayanan, N., Jayaprakash, R., Gopalakrishnan, V.: Phys. Procedia. 49, 49–57 (2013)

    Article  CAS  Google Scholar 

  25. Hashim, M., Alimuddin, S.K., Koo, B.H., Shirsath, S.E., Mohammed, E.M., Shah, J., Kotnala, R.K., Choi, H.K., Chung, H., Kumar, R.: J. Alloys Compd. 518, 11–18 (2012)

    Article  CAS  Google Scholar 

  26. Sanpo, N., Wang, J., Berndt, C.C., Nano, J.: Res. 22, 95–106 (2013)

    Google Scholar 

  27. Balavijayalakshmi, J., Suriyanarayanan, N., Jayapraksah, R.: Mater. Lett. 81, 52–54 (2012)

    Article  CAS  Google Scholar 

  28. Singh, C., Bansal, S., Kumar, V., Tikoo, K.B., Singhal, S.: RSC Adv. 5, 39052–39061 (2015)

    Article  CAS  Google Scholar 

  29. Azam, A., Alloys, J.: Compd. 540, 145–153 (2012)

    Article  CAS  Google Scholar 

  30. Carole Villette, A.R., Tailhades, P., Solid State, J.: Chem. 117, 64–72 (1995)

    Google Scholar 

  31. R. L. Fomekong, University catholic of Louvain Belgium/ University of Yaounde I Cameroon, Doctorate/PhD thesis, (2016)

  32. Lontio, R., Kenfack, P., Magnin, D., Hermans, S., Delcorte, A., Lambi, J., Solid State, J.: Chem. 230, 381–389 (2015)

    Google Scholar 

  33. Samavati, A., Mustafa, M.K., Ismail, A.F., Othman, M.H.D.: Mater. Express. 6, 473–482 (2016)

    Article  CAS  Google Scholar 

  34. Tailhades, P., Villette, C., Rousset, A., Kulkarni, G.U., Kannan, K.R.: J. Solid State Chem. 141, 56–63 (1998)

    Article  CAS  Google Scholar 

  35. Ahmad, I., Abbas, T., Islam, M.U., Maqsood, A.: Ceram. Int. 39, 6735–6741 (2013)

    Article  CAS  Google Scholar 

  36. Hammad, T.M., Salem, J.K., Amsha, A.A., Hejazy, N.K.: Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compd. 741, 123–130 (2018)

    Article  CAS  Google Scholar 

  37. Kambale, R.C., Shaikh, P.A., Harale, N.S., Bilur, V.A., Kolekar, Y.D., Bhosale, C.H., Rajpure, K.Y.: Structural and magnetic properties of Co1-xMnxFe2O4 spinel ferrites synthesized by combustion route. J. Alloys Compd. 490, 568–571 (2010)

    Article  CAS  Google Scholar 

  38. Hammad, T.M., Salem, J.K., Harrison, R.G.: The influence of annealing temperature on the structure, morphologies and optical properties of ZnO nanoparticles. Superlattice. Microst. 47, 335–340 (2010)

    Article  CAS  Google Scholar 

  39. Pan, W., Gu, F., Qi, K., Liu, Q., Wang, J.: Effect of Zn substitution on morphology and magnetic properties of CuFe2O4 nanofibers. J. Mater. Chem. Phys. 134, 1097 (2012)

    Article  CAS  Google Scholar 

  40. Kalai Selvan, R., Augustin, C.O., John Berchmans, L., Saraswathi, R.: Combustion synthesis of CuFe2O4. Mater. Res. Bull. 38, 41 (2003)

    Article  Google Scholar 

  41. Tan, X., Li, G., Zhao, Y., Hu, C.: The effect of Cu content on the structure of Ni1−xCuxFe2O4 spinels. Mater. Res. Bull. 44, 2160 (2009)

    Article  CAS  Google Scholar 

  42. Kaiser, M.: Effect of nickel substitutions on some properties of cu–Zn ferrites. J. Alloys Compd. 468, 15 (2009)

    Article  CAS  Google Scholar 

  43. Murthy, S.R., Citra, S.S., Reddy, K.V., Sobanadri, J.: Indian J. Pure Appl. Phys. 16, 79 (1978)

    CAS  Google Scholar 

  44. Mazen, S.A., Abdallah, M.H., Sabrah, B.A., Hashem, H.A.M.: The effect of titanium on some physical properties of CuFe2O4. Phys. Status Solidi A. 134, 263 (1992)

    Article  CAS  Google Scholar 

  45. Maaz, K., et al.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)

    Article  CAS  Google Scholar 

  46. Azam, A., Jawad, A., Ahmed, A.S., Chaman, M., Naqvi, A.H.: Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J. Alloys Compd. 509, 2909 (2011)

    Article  CAS  Google Scholar 

  47. Tony Dhiwahar, A., Sundararajan, M., Sakthivel, P., Dash, C.S., Yuvaraj, S.: Microwave-assisted combustion synthesis of pure and zinc-doped copper ferrite nanoparticles: structural, morphological, optical, vibrational, and magnetic behavior. J. Phys. Chem. Solids. 138, 109257 (2020)

    Article  CAS  Google Scholar 

  48. Wang, Y.S., Thomas, P.J., Brien, P.: Optical properties of ZnO nanocrystals doped with Cd, mg, Mn, and Fe ions. J. Phys. Chem. B. 110, 21412 (2006)

    Article  CAS  Google Scholar 

  49. Chen, Z.C., Zhuge, L.J., Wu, X.M., Meng, Y.D.: Initial study on the structure and optical properties of Zn1−xFexO films. Thin Solid Films. 515, 5462–5465 (2007)

    Article  CAS  Google Scholar 

  50. Zang, C.H., Zhang, D.M., Tang, C.J., Fang, S.J., Zong, Z.J., Yang, Y.X., Zhao, C.H., Zhang, Y.S.: Optical properties of a ZnO/P nanostructure fabricated by a chemical vapor deposition method. J. Phys. Chem. C113, 18527 (2009)

    Google Scholar 

  51. Zhuge, L.J., Wu, X.M., Wu, Z.F., Yang, X.M., Chen, X.M., Chen, Q.: Structure and deep ultraviolet emission of Co-doped ZnO films with Co3O4 nano-clusters. J. Mater. Chem. Phys. 120, 480 (2010)

    Article  CAS  Google Scholar 

  52. Bhargava, R., Sharma, P.K., Dutta, R.K., Kumar, S., Pandey, A.C., Kumar, N.: Influence of Co-doping on the thermal, structural, and optical properties of sol–gel derived ZnO nanoparticles. J. Mater. Chem. Phys. 120, 393 (2010)

    Article  CAS  Google Scholar 

  53. Anh, L.N., Loan, T.T., Duong, N.P., Soontaranon, S., Viet Nga, T.T., Hien, T.D.: Influence of Y and La substitution on particle size, structural and magnetic properties of nanosized nickel ferrite prepared by using citrate precursor method. J. Alloys Compd. 647, 419 (2015)

    Article  CAS  Google Scholar 

  54. Judith Vijaya, J., Sekaran, G., Bououdin, M.: Effect of Cu2+ doping on structural , morphological, optical and magnetic properties of MnFe2O4 particles/sheets/flakes-like nanostructures. Ceram. Int. 41, 15–26 (2015)

    Article  CAS  Google Scholar 

  55. Manikandan, A., Judith Vijaya, J., John Kennedy, L., Bououdina, M.: Structural, optical and magnetic properties of Zn1-xCuxFe2O4 nanoparticles prepared by microwave combustion method. J. Mol. Struct. 1035, 332–340 (2013)

    Article  CAS  Google Scholar 

  56. Bhasker, S.U., Reddy, M.V.R., Sol-Gel Sci, J.: Technol. 73, 396–402 (2015)

    Google Scholar 

  57. Bhukal, S., Namgyal, T., Mor, S., Bansal, S., Singhal, S.: J. Mol. Struct. 1012, 162–167 (2012)

    Article  CAS  Google Scholar 

  58. Baldi, G., Bonacchi, D., Innocenti, C., Lorenzi, G., Sangregorio, C.: J. Magn. Magn. Mater. 311, 10–16 (2007)

    Article  CAS  Google Scholar 

  59. Ammar, S., Helfen, A., Jouini, N., Fiévet, F., Rosenman, I., Villain, F., Molinie, P., Danot, M.: J. Mater. Chem. 111, 86–192 (2001)

    Google Scholar 

  60. Briceño, S., Del Castillo, H., Sagredo, V., Bramer-Escamilla, W., Silva, P.: Appl. Surf. Sci. 263, 100–103 (2012)

    Article  Google Scholar 

  61. Moradmard, H., Farjami Shayesteh, S., Tohidi, P., Abbas, Z., Khaleghi, M.: The variation of magnetic properties of nickel ferrite by annealing. J. Alloys Compd. 650, 116–122 (2015)

    Article  CAS  Google Scholar 

  62. Gopalan, E.V., Joy, P.A., Al-omari, I.A., Kumar, D.S., Yoshida, Y., Anantharaman, M.R.: On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite. J. Alloys Compd. 485, 711–717 (2009)

    Article  CAS  Google Scholar 

  63. Ayyappan, S., Mahadevan, S., Chandramohan, P., Srinivasan, M.P., Philip, J., Raj, B.: Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C114, 6334–6341 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talaat M. Hammad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, T.M., Kuhn, S., Amsha, A.A. et al. Investigation of structural, optical, and magnetic properties of Co2+ ions substituted CuFe2O4 spinel ferrite nanoparticles prepared via precipitation approach. J Aust Ceram Soc 57, 543–553 (2021). https://doi.org/10.1007/s41779-020-00556-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00556-z

Keywords

Navigation