Skip to main content

Advertisement

Log in

Insights on the Heating Characteristics of Mn and Co Ferrites

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The heating characteristics of ferrite nanoparticles are inconsistent due to various factors that affect the optimum particle size required for maximum power dissipation. The heating mechanism of Fe3O4, MnFe2O4, and Co0.5Fe2.5O4 in the size range 10–40 nm with varying particle size distribution is correlated with the effective specific absorption rate (ESAR). The effective magnetic anisotropy of the ferrite samples determined using electron spin resonance is between 11.8 and 24.8 kJ· m−3. The thermal profiles of Fe3O4, MnFe2O4, and Co0.5Fe2.5O4 are probed employing infrared thermography where the measured ESAR is between 1.74 and 3.16 nHm2·kg−1. The theoretical ESAR of 16.63 and 9.19 nHm2·kg−1 are obtained for the Co substituted Fe3O4 and MnFe2O4, respectively, for an average size of 40 nm. The analysis of particle size distributions in combination with theoretical estimations gives the percentage of particles contributing to the power dissipation as 80 % for narrow dispersion and 45 % for broad dispersion deviating from the predicted optimum size range. In addition to ascertaining the functioning regime of the linear response theory, an increase in ESAR with decreasing anisotropy energy is observed. The discrepancy between the simulations and experimentations is prudently examined, taking the intrinsic as well as extrinsic parameters into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, J. Magn. Magn. Mater. 201, 413 (1999)

    Article  ADS  Google Scholar 

  2. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005)

    Article  Google Scholar 

  3. J.S. Anandhi, G.A. Jacob, R.J. Joseyphus, Mater. Res. Express 6, 015045 (2019)

    Article  ADS  Google Scholar 

  4. R.E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002)

    Article  ADS  Google Scholar 

  5. J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 109, 083921 (2011)

    Article  ADS  Google Scholar 

  6. E. Fantechi, C. Innocenti, M. Albino, E. Lottini, C. Sangregorio, J. Magn. Magn. Mater. 380, 365 (2015)

    Article  ADS  Google Scholar 

  7. B. Jeyadevan, J. Ceram. Soc. Jpn. 118, 391 (2010)

    Article  Google Scholar 

  8. J.P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.C. Bacri, F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007)

    Article  Google Scholar 

  9. S. Bae, S.W. Lee, A. Hirukawa, Y. Takemura, Y.H. Jo, S.G. Lee, IEEE Trans. Nanotechnol. 8, 86 (2009)

    Article  ADS  Google Scholar 

  10. M.A. Gonzalez-Fernandez, T.E. Torres, M. Andrés-Vergés, R. Costo, P. de la Presa, C.J. Serna, M.P. Morales, C. Marquina, M.R. Ibarra, G.F. Goya, J. Solid State Chem. 182, 2779 (2009)

    Article  ADS  Google Scholar 

  11. A. Sathya, P. Guardia, R. Brescia, N. Silvestri, G. Pugliese, S. Nitti, L. Manna, T. Pellegrino, Chem. Mater. 28, 1769 (2016)

    Article  Google Scholar 

  12. S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, ACS Nano 11, 6808 (2017)

    Article  Google Scholar 

  13. J.S. Anandhi, G.A. Jacob, R.J. Joseyphus, J. Magn. Magn. Mater. 512, 166992 (2020)

    Article  Google Scholar 

  14. J.S. Anandhi, T. Arun, R.J. Joseyphus, Phys. B Phys. Condens. Matter 598, 412429 (2020)

    Article  Google Scholar 

  15. R. Otero-Lorenzo, E. Fantechi, C. Sangregorio, V. Salgueiriño, Chem. A Eur. J. 22, 6666 (2016)

    Article  Google Scholar 

  16. X. Lasheras, M. Insausti, J.M. De La Fuente, I. Gil De Muro, I. Castellanos-Rubio, L. Marcano, M.L. Fernández-Gubieda, A. Serrano, R. Martín-Rodríguez, E. Garaio, J.A. García, L. Lezama, Dalton Trans. 48, 11480 (2019)

    Article  Google Scholar 

  17. B.B. Lahiri, S. Ranoo, J. Philip, Infrared Phys. Technol. 78, 173 (2016)

    Article  ADS  Google Scholar 

  18. R. Hergt, S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007)

    Article  ADS  Google Scholar 

  19. S.S. Pati, S. Gopinath, G. Panneerselvam, M.P. Antony, J. Philip, J. Appl. Phys. 112, 054320 (2012)

    Article  ADS  Google Scholar 

  20. Y. Köseoǧlu, J. Magn. Magn. Mater. 300, 327 (2006)

    Article  ADS  Google Scholar 

  21. P.C. Fannin, I. Malaescu, C.N. Marin, J. Magn. Magn. Mater. 289, 162 (2005)

    Article  ADS  Google Scholar 

  22. O. Ayala-Valenzuela, P.C. Fannin, R. Betancourt-Galindo, O. Rodríguez-Fernández, J. Matutes-Aquino, J. Magn. Magn. Mater. 311, 111 (2007)

    Article  ADS  Google Scholar 

  23. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (John Wiley & Sons Inc, New Jersey, 2009).

    Google Scholar 

  24. T. Arun, K. Prakash, R. Kuppusamy, R.J. Joseyphus, J. Phys. Chem. Solids 74, 1761 (2013)

    Article  ADS  Google Scholar 

  25. G.A. Jacob, S. Sellaiyan, A. Uedono, R.J. Joseyphus, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  26. C.N. Chinnasamy, A. Yang, S.D. Yoon, K. Hsu, M.D. Shultz, E.E. Carpenter, S. Mukerjee, C. Vittoria, V.G. Harris, J. Appl. Phys. 101, 9 (2007)

    Google Scholar 

  27. R.V. Upadhyay, K.J. Davies, S. Wells, S.W. Charles, J. Magn. Magn. Mater. 132, 249 (1994)

    Article  ADS  Google Scholar 

  28. A. Doaga, A.M. Cojocariu, W. Amin, F. Heib, P. Bender, R. Hempelmann, O.F. Caltun, Mater. Chem. Phys. 143, 305 (2013)

    Article  Google Scholar 

  29. M.M. Cruz, L.P. Ferreira, J. Ramos, S.G. Mendo, A.F. Alves, M. Godinho, M.D. Carvalho, J. Alloys Compd. 703, 370 (2017)

    Article  Google Scholar 

  30. R.D. Raland, D. Saikia, C. Borgohain, J.P. Borah, J. Phys. D. Appl. Phys. 50, 325004 (2017)

    Article  Google Scholar 

  31. E.L. Verde, G.T. Landi, J.A. Gomes, M.H. Sousa, A.F. Bakuzis, J. Appl. Phys. 111, 123902 (2012)

    Article  ADS  Google Scholar 

  32. J.M. Byrne, V.S. Coker, S. Moise, P.L. Wincott, D.J. Vaughan, F. Tuna, E. Arenholz, G. Van Der Laan, R.A.D. Pattrick, J.R. Lloyd, N.D. Telling, J.R. Soc, Interface 10, 20130134 (2013)

    Google Scholar 

  33. J. Giri, P. Pradhan, T. Sriharsha, D. Bahadur, J. Appl. Phys. 97, 6 (2005)

    Article  Google Scholar 

  34. M.F. Casula, E. Conca, I. Bakaimi, A. Sathya, M.E. Materia, A. Casu, A. Falqui, E. Sogne, T. Pellegrino, A.G. Kanaras, Phys. Chem. Chem. Phys. 18, 16848 (2016)

    Article  Google Scholar 

  35. R. Chen, M.G. Christiansen, P. Anikeeva, ACS Nano 7, 8990 (2013)

    Article  Google Scholar 

  36. J. Stergar, Z. Jirák, P. Veverka, L. Kubíčková, T. Vrba, J. Kuličková, K. Knížek, F. Porcher, J. Kohout, O. Kaman, J. Magn. Magn. Mater. 475, 429 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST), Government of India, for the experimental facilities. Ms. J. Shebha Anandhi acknowledges Dr. T. Arun, Mr. G. Antilen Jacob, and Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology Madras for the electron spin resonance measurements, and Dr. R. Justin Joseyphus acknowledges DST for the project CRG/2018/000939.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparations, data collection, analysis and writing of the first draft of the manuscript were performed by Ms. J. Shebha Anandhi. Supervision was done by Dr. R. Justin Joseyphus. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Justin Joseyphus.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandhi, J.S., Joseyphus, R.J. Insights on the Heating Characteristics of Mn and Co Ferrites. Int J Thermophys 42, 30 (2021). https://doi.org/10.1007/s10765-020-02782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02782-w

Keywords

Navigation