Skip to main content
Log in

In vitro regeneration, antioxidant potential, and genetic fidelity analysis of Asystasia gangetica (L.) T.Anderson

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

This article has been updated

Abstract

An effective protocol for the plant regeneration via direct and indirect organogenesis has been developed from leaf explants of Asystasia gangetica (L.), cultured on Murashige and Skoog (MS) medium supplemented with various concentrations and combinations of auxin and cytokinins. Approximately 86% of explants produced direct shoots on MS medium containing 0.5 mg L−1 6-benzyladenine (BA) and 10 μg L−1 Triacontanol (TRIA) with a maximum of 4.82 ± 0.29 shoots per leaf segment. For production of callus-mediated plantlets (indirect), primarily callus was induced on MS medium containing 2 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D), which was then subcultured on medium with 0.1 mg L−1 naphthaleneacetic acid (NAA), 0.5 mg L−1 BA, and 1 to 8 mg L−1 2-isopentenyl adenine (2iP) in order to develop organogenic callus and subsequent shoot induction. A maximum of 6.84 ± 0.05 shoots per callus clump was obtained on MS media supplemented with 4 mg L−1 2iP, 0.5 mg L−1 BA, and 0.1 mg L−1 NAA. The shootlets produced roots when cultured on half-strength MS media supplemented with 2 mg L−1 indole-3-butyric acid (IBA). In vitro propagated plantlets were hardened on soil rite and acclimatized to field condition with 85% survivability. The chlorophyll content of acclimatized plants was comparable with that of the mother plant, while stomatal micromorphology of regenerated plants exhibited no abnormalities. The radical scavenging and antioxidant activity of methanolic extract of leaves were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability of plasma (FRAP), and phosphomolybdenum test. In all experiments, regenerated plants exhibited enhanced antioxidant potential indicating micropropagated plants could be exploited for isolation of novel biomolecules. Further, the genetic homogeneity of acclimatized plants was confirmed by PCR-based start codon targeted (SCoT) markers and ycf1b DNA barcoding primers which exhibited monomorphic bands identical to the normal mother plant and no variations were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3

Similar content being viewed by others

Change history

  • 08 April 2021

    The fraction bar separating numerator and denominator in the formula in the methodology section In vitro antioxidant activity of an earlier version of this article incorrectly extended all the way the left-hand side of the formula.

References

  • Adeniran AA, Sonibare MA, Rajacharya GH, Kumar S (2018) Assessment of genetic fidelity of Dioscorea bulbifera L. and Dioscorea hirtiflora Benth. and medicinal bioactivity produced from the induced tuberous roots. Plant Cell Tiss Org Cult 132:343–357

  • Agarwal T, Gupta AK, Patel AK, Shekhawat NS (2015) Micropropagation and validation of genetic homogeneity of Alhagi maurorum using SCoT, ISSR and RAPD markers. Plant Cell Tiss Org Cult 120:313–323. https://doi.org/10.1007/s11240-014-0608-z

  • Agastian P, Williams L, Ignacimuthu S (2006) In vitro propagation of Justicia gendarussa Burm. f.–a medicinal plant. Indian J Biotechnol 5:246–248

    Google Scholar 

  • Ahmad N, Faisal M, Anis M, Aref IM (2010) In vitro callus induction and plant regeneration from leaf explants of Ruta graveolens L. S Afr J Bot 76:597–600

    CAS  Google Scholar 

  • Ajithan C, Vasudevan V, Sathish D, Sathish S, Krishnan V, Manickavasagam M (2019) The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tiss Org Cult 139:547–561

  • Akah PA, Ezike AC, Nwafor SV, Okoli CO, Enwerem NM (2003) Evaluation of the anti-asthmatic property of Asystasia gangetica leaf extracts. J Ethnopharmacol 89:25–36

    CAS  PubMed  Google Scholar 

  • Amoo SO, Aremu AO, Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tiss Org Cult 111:345–358. https://doi.org/10.1007/s11240-012-0200-3

  • Amoo SO, Staden J (2013) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell Tiss Org Cult 112:249–256. https://doi.org/10.1007/s11240-012-0230-x

  • Aremu AO, Bairu MW, Szucova L, Finnie JF, Staden JV (2012) The role of meta-topolins on the photosynthetic pigments profiles and foliar structures of micropropagated ‘Williams’ bananas. J Plant Physiol 169:1530–1541

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshipour M, Mafakheri M, Kordrostami M, Zakir A, Rahimi N, Feizi F, Mohseni M (2019) In vitro multiplication, genetic fidelity and phytochemical potentials of Vaccinium arctostaphylos L: an endangered medicinal plant. Ind Crop Prod 141:111812

    CAS  Google Scholar 

  • Beena MR, Martin KP, Kirti PB, Hariharan M (2003) Rapid in vitro propagation of medicinally important Ceropegia candelabrum. Plant Cell Tiss Org Cult 72:285–289. https://doi.org/10.1023/A:1022395809204

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    CAS  PubMed  Google Scholar 

  • Bhagya N, Chandrashekar KR, Karun A, Bhavyashree U (2012) Plantlet regeneration through indirect shoot organogenesis and somatic embryogenesis in Justicia gendarussa Burm. f., a medicinal plant. J Plant Biochem Biotechnol 22:474–482. https://doi.org/10.1007/s13562-012-0177-3

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Bose B, Paul P, Tandon P (2017) Evaluation of genetic stability and analysis of phytomedicinal potential in micropropagated plants of Rumex nepalensis – a medicinally important source of pharmaceutical biomolecules. J Appl Res Med Aromat Plants 6:80–91. https://doi.org/10.1016/j.jarmap.2017.02.003

    Article  Google Scholar 

  • Bhattacharyya P, Kumaria S, Diengdoh R, Tandon P (2014) Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene 2:489–504

  • Bose B, Kumaria S, Choudhury H, Tandon P (2016) Assessment of genetic homogeneity and analysis of phytomedical potential in micropropagated plants of Nardostachys jatamansi, a critically endangered, medicinal plant of alpine Himalayas. Plant Cell Tiss Org Cult 124:331–349. https://doi.org/10.1007/s11240-015-0897x

  • Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

    Article  CAS  Google Scholar 

  • Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23

    CAS  PubMed  Google Scholar 

  • Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in Propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182. https://doi.org/10.38212/2224-6614.2748

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93. https://doi.org/10.1007/s11105-008-0060-5

  • Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134

    CAS  Google Scholar 

  • Dev SA, Sijimol K, Prathibha PS, Sreekumar VB, Muralidharan EM (2020) DNA barcoding as a valuable molecular tool for the certification of planting materials in bamboo. 3 Biotech 10:59. https://doi.org/10.1007/s13205-019-2018-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Devarumath R, Nandy S, Rani V, Marimuthu S, Muraleedharan N, Raina S (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Rep 21:166–173. https://doi.org/10.1007/s00299-002-0496-2

    Article  CAS  Google Scholar 

  • Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, Zhou S (2015) ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5:8348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dornenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzym Microb Technol 17:674–684

    Google Scholar 

  • Elayaraja D, Subramanyam K, Vasudevan V, Sathish S, Kasthurirengan S, Ganapathi A, Manickavasagam M (2019) Meta-Topolin (mT) enhances the in vitro regeneration frequency of Sesamum indicum (L.). Biocatal Agric. Biotechnol 21:101320

    Google Scholar 

  • Faisal M, Ahmad N, Anis M, Alatar AA, Qahtan AA (2018) Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saud J Biol Sci 25:273–277

    CAS  Google Scholar 

  • Gamble JS (1928) Flora of the presidency of Madras, vol I-III. Adlard & son, Ltd, London. https://doi.org/10.5962/bhl.title.21628

    Book  Google Scholar 

  • Giridhar P, Gururaj HB, Ravishankar GA (2005) In vitro shoot multiplication through shoot tip cultures of Decalepis hamiltonii Wight & Arn., a threatened plant endemic to Southern India. In Vitro Cell Dev Biol - Plant 41:77–80

  • Giridhar P, Indu EP, Ravishankar GA, Chandrasekar A (2004) Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr. In Vitro Cell Dev Biol - Plant 40:200–203

  • Goto S, Thakur RC, Ishii K (1998) Determination of genetic stability in long-term micropropagated shoots of Pinus thunbergii Parl. using RAPD markers. Plant Cell Rep 18:193–197

    CAS  PubMed  Google Scholar 

  • Grzegorczyk-Karolak I, Kuzma L, Wysokinska H (2015) Study on the chemical composition and antioxidant activity of extracts from shoot culture and regenerated plants of Scutellaria altissima L. Acta Physiol Plant 37:1736. https://doi.org/10.1007/s11738-014-1736-0

    Article  CAS  Google Scholar 

  • Guo X, Wang L, Chang X, Li Q, Abbasi AM (2018) Influence of plant growth regulators on key-coding genes expression associated with phytochemicals biosynthesis and antioxidant activity in soybean (Glycine max (L.) Merr) sprouts. Int J Food Sci Technol 54:771–779

    Google Scholar 

  • Hamid AA, Aiyelaagbe OO, Ahmed RN, Usman LA, Adebayo SA (2011) Preliminary phytochemistry, antibacterial and antifungal properties of extracts of Asystasia gangetica Linn T. Anderson grown in Nigeria. Adv Appl Sci Res 2:219–226

    CAS  Google Scholar 

  • Hamideh J, Khosro P, Javad ND (2012) Callus induction and plant regeneration from leaf explants of Falcaria vulgaris an important medicinal plant. J Med Plant Res 6:3407–3414

    CAS  Google Scholar 

  • Janakiraman N, Jansi JJ, Johnson M, Zahir Hussain MI, Jeeva S (2014) Antibacterial efficacy of Abrus precatorius L. and Asystasia gangetica (L.) T. Anderson. Anti Infect Agents 12:165–170

    CAS  Google Scholar 

  • Jogam P, Sandhya D, Shekhawat MS, Alok A, Manokari M, Abbagani S, Allini VR (2020) Genetic stability analysis using DNA barcoding and molecular markers and foliar micro-morphological analysis of in vitro regenerated and in vivo grown plants of Artemisia vulgaris L. Ind Crop Prod 151:112476. https://doi.org/10.1016/j.indcrop.2020.112476

    Article  CAS  Google Scholar 

  • Joshi P, Joshi N, Purohit SD (2006) Stomatal characteristics during micropropagation of Wrightia tomentosa. Biol Plant 50:275–278

    Google Scholar 

  • Komalavalli N, Rao MV (2000) In vitro micropropagation of Gymnema sylvestre–a multipurpose medicinal plant. Plant Cell Tiss Org Cult 61:97–105

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. https://doi.org/10.1007/s13205-016-0389-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudikala H, Jogam P, Sirikonda A, Mood K, Allini VR (2020) In vitro micropropagation and genetic fidelity studies using SCoT and ISSR primers in Annona reticulata L.: an important medicinal plant. Vegetos 33:446–457. https://doi.org/10.1007/s42535-020-00128-3

    Article  Google Scholar 

  • Kumar RP, Sujatha D, Saleem TM, Chetty CM, Ranganayakulu D (2010) Potential antidiabetic and antioxidant activities of Morus indica and Asystasia gangetica in alloxan-induced diabetes mellitus. J Exp Pharmacol 2:29–36. https://doi.org/10.2147/jep.s8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SS, Manoj P, Giridhar P (2016) Micropropagation for mass multiplication and enriched production of ascorbic acid in tissue culture foliage of roselle (Hibiscus sabdariffa L.). In Vitro Cell Dev Biol - Plant 52:427–436

  • Lacroix B, Assoumou Y, Sangwan RS (2003) Efficient in vitro direct shoot organogenesis and regeneration of fertile plants from embryo explants of Bambara groundnut (Vigna subterranea L. Verdc.). Plant Cell Rep 1:1153–1158

    Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, Woodward FI (2001) Plant development: signals from mature to new leaves. Nature 411:154. https://doi.org/10.1038/35075660

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Venkataramareddy SR, Neelwarne B (2007) Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers. Electron J Biotechnol 10:106–113. https://doi.org/10.2225/vol10-issue1-fulltext-12

    Article  Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    CAS  PubMed  Google Scholar 

  • Li G, Hu S, Yang J, Zhao X, Kimura S, Schultz EA, Hou H (2020) Establishment of an agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae). Plant Cell Rep 39:737–750

    CAS  PubMed  Google Scholar 

  • Mahendran G, Bai VN (2014) Micropropagation, antioxidant properties and phytochemical assessment of Swertia corymbosa (Griseb.) Wight ex CB Clarke: a medicinal plant. Acta Physiol Plant 36:589–603

    CAS  Google Scholar 

  • Malabadi RB, Mulgund GS, Kallappa N (2005) Micropropagation of Dendrobium nobile from shoot tip sections. J Plant Physiol 162:473–478

    CAS  PubMed  Google Scholar 

  • Mallon R, Rodríguez-Oubina J, Gonzalez ML (2011) Shoot regeneration from in vitro-derived leaf and root explants of Centaurea ultreiae. Plant Cell Tiss Org Cult 106:523–530

  • Mandal J, Laxminarayana U (2014) Indirect shoot organogenesis from leaf explants of Adhatoda vasica Nees. Springerplus 3:1–8

    Google Scholar 

  • Mani M, Shekhawat MS (2017) Foliar micromorphology of in vitro-cultured shoots and field-grown plants of Passiflora foetida. Hortic Plant J 3:34–40. https://doi.org/10.1016/j.hpj.2017.01.009

    Article  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560

    CAS  PubMed  Google Scholar 

  • Miyazawa SI, Livingston NJ, Turpin DH (2006) Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa×P. deltoides). J Exp Bot 57:373–380. https://doi.org/10.1093/jxb/eri278

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ncube B, Ngunge VNP, Finnie JF, Van Staden J (2011) A comparative study of the antimicrobial and phytochemical properties between outdoor grown and micropropagated Tulbaghia violacea Harv. Plants J Ethnopharmacol 12134:775–780. https://doi.org/10.1016/j.jep.2011.01.039

    Article  CAS  Google Scholar 

  • Parimalan R, Giridhar P, Gururaj HB, Ravishankar GA (2009) Micropropagation of Bixa orellana using phytohormones and triacontanol. Biol Plant 53:347–350

    CAS  Google Scholar 

  • Piatczak E, Grzegorczyk-Karolak I, Wysokińska H (2014) Micropropagation of Rehmannia glutinosa Libosch.: production of phenolics and flavonoids and evaluation of antioxidant activity. Acta Physiol Plant 36:1693–1702. https://doi.org/10.1007/s11738-014-1544-6

    Article  CAS  Google Scholar 

  • Prasad AGD, Shyma TB, Raghavendra MP (2013) Plants used by the tribes for the treatment of digestive system disorders in Wayanad district, Kerala. J Appl Pharm Sci 3:171–175

    Google Scholar 

  • Premkumar A, Mercado JA, Quesada MA (2001) Effects of in vitro tissue culture conditions and acclimatization on the contents of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio. J Plant Physiol 158:835–840

    CAS  Google Scholar 

  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex : specific application to the determination of vitamin E. J Anal Biochem 269:337–341

    CAS  Google Scholar 

  • Quattrocchi U (2012) CRC World dictionary of medicinal and poisonous plants: common names, Scientific names, Eponyms, Synonyms, and Etymology. CRC press, Boca Raton, pp 479–480. https://doi.org/10.1201/b16504

    Book  Google Scholar 

  • Rahmani MS, Pijut PM, Shabanian N, Nasri M (2015) Genetic fidelity assessment of in vitro-regenerated plants of Albizia julibrissin using SCoT and IRAP fingerprinting. In Vitro Cell Dev Biol - Plant 51:407–419. https://doi.org/10.1007/s11627-015-9692-y

  • Rathore NS, Rai MK, Phulwaria M, Rathore N, Shekhawat NS (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559. https://doi.org/10.1007/s11738-013-1429-0

    Article  CAS  Google Scholar 

  • Reddy BO, Giridhar P, Ravishankar GA (2002) The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W & A. Plant Cell Tiss Org Cult 71:253–258

  • Rice-Evans CA, Miller NJ, Paganaga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Google Scholar 

  • Ries SK, Wert V, Sweeley CC, Leavitt RA (1977) Triacontanol: a new naturally occurring plant growth regulator. Science 195:1339–1341

    CAS  PubMed  Google Scholar 

  • Rohela GK, Jogam P, Yaseen Mir M, Ahmad Shabnam A, Shukla P, Abbagani S, Nahaid Kamili A (2020) Indirect regeneration and genetic fidelity analysis of acclimated plantlets through SCoT and ISSR markers in Morus alba L. cv. Chinese white. Biotechnol Rep 25:e00417. https://doi.org/10.1016/j.btre.2020.e00417

    Article  Google Scholar 

  • Salisbury EJ (1928) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos Trans R Soc Lond B 216:1–65

    Google Scholar 

  • Sathish D, Vasudevan V, Theboral J, Elayaraja D, Appunu C, Siva R, Manickavasagam M (2018) Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. In Vitro Cell Dev Biol - Plant 54:399–412. https://doi.org/10.1007/s11627-018-9910-5

  • Savitikadi P, Jogam P, Rohela GK, Ellendula R, Sandhya D, Allini VR, Abbagani S (2020) Direct regeneration and genetic fidelity analysis of regenerated plants of Andrographis echioides (L.) - an important medicinal plant. Ind Crop Prod 155:112766

    CAS  Google Scholar 

  • Seth S, Panigrahi J (2019) In vitro organogenesis of Abutilon indicum (L.) Sweet from leaf derived callus and assessment of genetic fidelity using ISSR markers. J Hortic Sci Biotechnol 94:70–79. https://doi.org/10.1080/14620316.2018.1447314

    Article  CAS  Google Scholar 

  • Shameer MC, Saeeda VP, Madhusoodanan PV, Benjamin S (2009) Direct organogenesis and somatic embryogenesis in Beloperone plumbaginifolia (Jacq.) Nees. Indian J Biotechnol 8:132–135

    CAS  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

    Article  CAS  Google Scholar 

  • Shekhawat MS, Manokari M, Revathi J (2007) In vitro propagation, micromorphological studies and ex vitro rooting of Alternanthera philoxeroides (Mart.) Griseb: an important aquatic plant. Aquac Int 25:423–435

    Google Scholar 

  • Shen X, Chen J, Kane ME (2007) Indirect shoot organogenesis from leaves of Dieffenbachia cv. Camouflage. Plant Cell Tiss Org Cult 89:83–90

  • Singleton VL, Orthofer R, Lamuela-raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Google Scholar 

  • Stewart P, Boonsiri P, Puthong S, Rojpibulstit P (2013) Antioxidant activity and ultrastructural changes in gastric cancer cell lines induced by Northeastern Thai edible folk plant extracts. BMC Complem Altern M 13:60

    Google Scholar 

  • Tantos A, Meszaros A, Kissimon J, Horvath G, Farkas T (1999) The effect of triacontanol on micropropagation of balm, Melissa officinalis L. Plant Cell Rep 19:88–91

    CAS  PubMed  Google Scholar 

  • Tikendra L, Koijam AS, Nongdam P (2019) Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene 20:100562

    Google Scholar 

  • Ugraiah A, Sreelatha VR, Reddy PK, Rajasekhar K, Rani SS, Karuppusamy S, Pullaiah T (2011) In vitro shoot multiplication and conservation of Caralluma bhupenderiana Sarkaria-an endangered medicinal plant from South India. Afr J Biotechnol 10:9328–9336

    CAS  Google Scholar 

  • Venkatachalam P, Geetha N, Rao KS, Jayabalan N (1999) Rapid and high-frequency in vitro plant regeneration from leaflet and petiole explants of groundnut (Arachis hypogaea L.). Appl Biochem Biotechnol 80:193–203

  • Venkatachalam P, Jayabalan N (1997) Effect of auxins and cytokinins on efficient plant regeneration and multiple-shoot formation from cotyledons and cotyledonary-node explants of groundnut (Arachis hypogaea L.) by in vitro culture technology. Appl Biochem Biotechnol 67:237–247

    CAS  Google Scholar 

  • Voyiatzi C, Voyiatzis DG (1989) In vitro shoot proliferation rate of Dieffenbachia exotica cultivar ‘Marianna’as affected by cytokinins, the number of recultures and the temperature. Sci Hortic 40:163–169

    Google Scholar 

  • Wojcik A, Podstolski A (2007) Leaf explant response in in vitro culture of St. John’s wort (Hypericum perforatum L.). Acta Physiol Plant 29:151–156

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge DST-PURSE program of Bangalore University for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh T G.

Additional information

Editor: Jianxin Chen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilkalal, A., A S, A. & T G, U. In vitro regeneration, antioxidant potential, and genetic fidelity analysis of Asystasia gangetica (L.) T.Anderson. In Vitro Cell.Dev.Biol.-Plant 57, 447–459 (2021). https://doi.org/10.1007/s11627-020-10141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10141-5

Keywords

Navigation