Skip to main content
Log in

A reduced-dimensional explicit discrete element solver for simulating granular mixing problems

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a reduced-dimensional proper orthogonal decomposition (POD) solver to accelerate discrete element method (DEM) simulations of the granular mixing problem. We employ the method of snapshots to create a low-dimensional solution space from previous DEM simulations. By reducing the dimensionality of the problem, we accelerate the calculations of the incremental solution with fewer degrees of freedom (DOF), while enabling a larger stable time step due to the filtering of low-energy mode. We analyze two feasible strategies to generate the reduced-dimensional basis, one generating by finding the orthogonal basis from the global snapshots captured at the same location in the parametric domains; another one employing the known POD bases from the closest known cases. Our results show that, when POD bases are generated via the local strategy, the reduced-order model is a more efficient alternative to the full-scale simulations for extrapolating behaviors in the parametric domain. Numerical examples of granular mixing problems are presented to demonstrate the efficiency and accuracy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arntz, M.M.H.D., den Otter, W.K., Briels, W.J., Bussmann, P.J.T., Beeftink, H.H., Boom, R.M.: Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level. AIChE J. 54(12), 3133–3146 (2008)

    Article  Google Scholar 

  2. Bertrand, F., Leclaire, L.-A., Levecque, G.: Dem-based models for the mixing of granular materials. Chem. Eng. Sci. 60(8–9), 2517–2531 (2005)

    Article  Google Scholar 

  3. Bhalode, P., Ierapetritou, M.: A review of existing mixing indices in solid-based continuous blending operations. Powder Technol. (2020)

  4. Boac, J.M., Kingsly Ambrose, R.P., Casada, M.E., Maghirang, R.G., Maier, D.E.: Applications of discrete element method in modeling of grain postharvest operations. Food Eng. Rev. 6(4), 128–149 (2014)

    Article  Google Scholar 

  5. Borée, J.: Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35(2), 188–192 (2003)

    Article  Google Scholar 

  6. Boukouvala, F., Gao, Y., Muzzio, F., Ierapetritou, M.G.: Reduced-order discrete element method modeling. Chem. Eng. Sci. 95(3), 12–26 (2013)

    Article  Google Scholar 

  7. Bryant, E.C., Sun, W.C.: A micromorphically regularized cam-clay model for capturing size-dependent anisotropy. Comput. Methods Appl. Mech. Eng. (2019)

  8. Burns, S.J., Hanley, K.J.: Establishing stable time-steps for dem simulations of noncollinear planar collisions with linear contact laws. Int. J. Numer. Meth. Eng. 110(2), 186–200 (2017)

    Article  MATH  Google Scholar 

  9. Ceccato, C., Zhou, X., Pelessone, D., Cusatis, G.: Proper orthogonal decomposition framework for the explicit solution of discrete systems with softening response. J. Appl. Mech. 85(5) (2018)

  10. Chen, L., Hontoir, Y., Huang, D., Zhang, J., Julian Morris, A.: Combining first principles with black-box techniques for reaction systems. Control Eng. Pract. 12(7), 819–826 (2004)

    Article  Google Scholar 

  11. Cleary, P.W., Metcalfe, G., Liffman, K.: How well do discrete element granular flow models capture the essentials of mixing processes? Appl. Math. Model. 22(12), 995–1008 (1998)

    Article  Google Scholar 

  12. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  13. Deen, N.G., GodliebWillem, G.S., Kuipers, J.A.M.: Numerical analysis of solids mixing in pressurized fluidized beds. Ind. Eng. Chem. Res. 49(11), 5246–5253 (2010)

    Article  Google Scholar 

  14. Deokar, R., Shimada, M., Lin, C., Tamma, K.K.: On the treatment of high-frequency issues in numerical simulation for dynamic systems by model order reduction via the proper orthogonal decomposition. Comput. Methods Appl. Mech. Eng. 325, 139–154 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1), 50–79 (2009)

    Article  Google Scholar 

  16. Fu, G., He, L., Ma, G.: 3D rock mass geometrical modeling with arbitrary discontinuities. Int. J. Appl. Mech. 2(04), 871–887 (2010)

    Article  Google Scholar 

  17. Georgiou, I.T., Schwartz, I.B.: Dynamics of large scale coupled structural/mechanical systems: a singular perturbation/proper orthogonal decomposition approach. SIAM J. Appl. Math. 59(4), 1178–1207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graftieaux, L., Michard, M., Grosjean, N.: Combining piv, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12(9), 1422–1429 (2001)

    Article  ADS  Google Scholar 

  19. Gray, G.A., Fowler, K., Griffin, J.D.: Hybrid optimization schemes for simulation-based problems. Procedia Comput. Sci. 1(1), 1349–1357 (2010)

    Article  Google Scholar 

  20. Hilberg, D., Lazik, W., Fiedler, H.E.: The application of classical pod and snapshot pod in a turbulent shear layer with periodic structures. Appl. Sci. Res. 53(3–4), 283–290 (1994)

    Article  ADS  Google Scholar 

  21. Holmes, P., Lumley, J.L., Berkooz, G., Rowley., C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  22. Hung, E.S., Senturia, S.D.: Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs. J. Microelectromech. Syst. 8(3), 280–289 (1999)

    Article  Google Scholar 

  23. Ilak, M., Rowley, C.W.: Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20(3), 034103 (2008)

    Article  ADS  MATH  Google Scholar 

  24. Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41(1–3), 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Eng. 51(4), 479–504 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuhn, M.R., Mitchell, J.K.: New perspectives on soil creep. J. Geotech. Eng. 119(3), 507–524 (1993)

    Article  Google Scholar 

  27. Kunisch, K., Volkwein, S., Xie, L.: Hjb-pod-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701–722 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lacey, P.M.: C:” the mixing of solid particles”. Inst. of Chem. Engrs. Trans. 21\_ (1943)

  29. Lee, C.-H., Chen, J.-S.: Proper orthogonal decomposition-based model order reduction via radial basis functions for molecular dynamics systems. Int. J. Numer. Meth. Eng. 96(10), 599–627 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, C.-C., Hsiau, S.-S., Tsai, T.-H., Tai, C.-H.: Segregation to mixing in wet granular matter under vibration. Chem. Eng. Sci. 65(3), 1109–1116 (2010)

    Article  Google Scholar 

  31. Liu, D., Sun, D.-W., Zeng, X.-A.: Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess. Technol. 7(2), 307–323 (2014)

    Article  Google Scholar 

  32. Liu, Y., Sun, W.C., Yuan, Z., Fish, J.: A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials. Int. J. Numer. Meth. Eng. 106(2), 129–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1), 51–117 (2004)

    Article  Google Scholar 

  34. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Atmospheric Turbulence and Radio Wave Propagation (1967)

  35. Masuda, H., Higashitani, K., Yoshida, H.: Powder Technology Handbook, 3rd edn. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  36. Mclaren, C., Third, J.R., Müller, C.R.: Experimental investigation of axial dispersion in a horizontal rotating cylinder. Granular Matter 17(1), 43–48 (2015)

    Article  Google Scholar 

  37. Mellmann, J.: The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol. 118, 251–270 (2001)

    Article  Google Scholar 

  38. Meyer, M., Matthies, H.G.: Efficient model reduction in non-linear dynamics using the Karhunen–Loeve expansion and dual-weighted-residual methods. Comput. Mech. 31(1–2), 179–191 (2003)

    Article  MATH  Google Scholar 

  39. Romijn, R., Özkan, L., Weiland, S., Ludlage, J., Marquardt, W.: A grey-box modeling approach for the reduction of nonlinear systems. J. Process Control 18(9), 906–914 (2008)

    Article  Google Scholar 

  40. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. In: Modeling and Computations in Dynamical Systems: In Commemoration of the 100th Anniversary of the Birth of John Von Neumann, pp. 301–317. World Scientific (2006)

  41. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives Comput. Methods Eng. 15(3), 1 (2007)

    Article  Google Scholar 

  42. Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sun, W.C., Mota, A.: A multiscale overlapped coupling formulation for large-deformation strain localization. Comput. Mech. 54(3), 803–820 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, W.C., Kuhn, M.R., Rudnicki, J.W.: A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band. Acta Geotech. 8(5), 465–480 (2013)

    Article  Google Scholar 

  45. Šmilauer, V., Chareyre, B.: Dem formulation. In: Yade Documentation 2nd ed. The Yade Project (2015) https://doi.org/10.5281/zenodo.34044.http://yade-dem.org/doc/

  46. Šmilauer, V., et al.: Yade Documentation 2nd ed. The Yade Project (2015). https://doi.org/10.5281/zenodo.34073.http://yade-dem.org/doc/

  47. Wang, K., Sun, W.C.: Anisotropy of a tensorial Bishop’s coefficient for wetted granular materials. J. Eng. Mech. 143(3), 4015004 (2015)

    Google Scholar 

  48. Wang, K., Sun, W.C.: A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain. Comput. Methods Appl. Mech. Eng. 304, 546–583 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Wang, K., Sun, W.C.: A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Comput. Methods Appl. Mech. Eng. 334, 337–380 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wang, K., Sun, W.C.: Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning. Comput. Methods Appl. Mech. Eng. 346, 216–241 (2019a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Wang, K., Sun, W.C.: An updated lagrangian LBM-DEM-FEM coupling model for dual-permeability fissured porous media with embedded discontinuities. Comput. Methods Appl. Mech. Eng. 344, 276–305 (2019b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Wang, K., Sun, W., Salager, S., Na, S.H., Khaddour, G.: Identifying material parameters for a micro-polar plasticity model via X-ray micro-CT images: lessons learned from the curve-fitting exercises. Int. J. Multiscale Comput. Eng. (2016)

  53. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng. 237, 10–26 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Wen, Y., Liu, M., Liu, B., Shao, Y.: Comparative study on the characterization method of particle mixing index using DEM method. Procedia Eng. 102, 1630–1642 (2015)

    Article  Google Scholar 

  55. Willcoxand, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  ADS  Google Scholar 

  56. Williams, J.R., Rege, N.: Coherent vortex structures in deforming granular materials. Mech. Cohesive frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 2(3), 223–236 (1997)

    Article  Google Scholar 

  57. Yang, S., Wang, J., Cahyadi, A., Jia, W.C.: Dem study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum. AIChE J. 62(11), 3874–3888 (2016)

    Article  Google Scholar 

  58. Zhong, X., Sun, W.C.: An adaptive reduced-dimensional discrete element model for dynamic responses of granular materials with high-frenquency noises. Int. J. Multiscale Comput. Eng. 16(4), 345–366 (2018)

    Article  Google Scholar 

  59. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for the first author is provided by the China Scholarship Council (CSC) under Grant Number 201606260177. The first and third author are supported by the Fundamental Research Funds for the Central Universities, the National Water Pollution Control and Treatment Science and Technology Major Project (2017ZX07201001), and the National Basic Research Program of China (973 Program: 2011CB013800). XRZ would like to thank Dr. Kun Wang for his help during his stay at Columbia University. WCS’s research is supported by the Dynamic Materials and Interactions Program from the Air Force Office of Scientific Research under Grant Contract FA9550-17-1-0169, the Earth Materials and Processes program from the US Army Research Office under Grant Contract W911NF-18-2-0306, and the NSF CAREER Grant CMMI-1846875. These supports are gratefully acknowledged. The views and conclusions contained in this document are those of the authors, and should not be interpreted as representing the official policies, either expressed or implied, of the sponsors, including the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Sun, W. & Dai, Y. A reduced-dimensional explicit discrete element solver for simulating granular mixing problems. Granular Matter 23, 13 (2021). https://doi.org/10.1007/s10035-020-01077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01077-z

Keywords

Navigation