Skip to main content
Log in

Tasting nuclear pasta made with classical molecular dynamics simulations

  • View & Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Nuclear clusters or voids in the inner crust of neutron stars were predicted to have various shapes collectively nicknamed nuclear pasta. The recent review in Ref. [1] by López, Dorso and Frank summarized their systematic investigations into properties especially the morphological and thermodynamical phase transitions of the nuclear pasta within a Classical Molecular Dynamics model, providing further stimuli to find more observational evidences of the predicted nuclear pasta in neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Notes

  1. J. A. López, C. O. Dorso, and G. Frank, Properties of nuclear pastas, Front. Phys. 16(2), 24301 (2021)

    Article  ADS  Google Scholar 

  2. The National Academies Press, New Worlds, New Horizons in Astronomy and Astrophysics, 2011, https://www.nap.edu/catalog/12951/new-worlds-new-horizons-in-astronomy-and-astrophysics

  3. The National Academies Press, Nuclear Physics: Exploring the Heart of Matter, Report of the Committee on the Assessment of and Outlook for Nuclear Physics, 2012, https://www.nap.edu/catalog/13438/nuclear-physics-exploring-the-heart-of-matter

  4. The 2015 U.S. Long Range Plan for Nuclear Science, Reaching for the Horizon, https://science.energy.gov/~/media/np/nsac/pdf/2015LRP/2015_LRPNS_091815.pdf

  5. The Nuclear Physics European Collaboration Committee (NuPECC) Long Range Plan, 2017, Perspectives in Nuclear Physics, http://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf

  6. P. J. Siemens, Liquid-gas phase transition in nuclear matter, Nature 305(5933), 29 (1983)

    Article  Google Scholar 

  7. J. M. Lattimer and M. Prakash, Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers, Phys. Rep. 333, 121 (2000)

    Article  ADS  Google Scholar 

  8. B. A. Li, P. G. Krastev, D. H. Wen, and N. B. Zhang, Towards understanding astrophysical effects of nuclear symmetry energy, Eur. Phys. J. A 55(7), 39 (2019)

    Article  ADS  Google Scholar 

  9. J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Nuclear constraints on properties of neutron star crusts, Astrophys. J. 697(2), 1549 (2009)

    Article  ADS  Google Scholar 

  10. W. G. Newton, M. Gearheart, and B. A. Li, A survey of the parameter space of the compressible liquid drop model as applied to the neutron star inner crust, Astrophys. J. Suppl. Ser. 204(1), 9 (2013)

    Article  ADS  Google Scholar 

  11. C. J. Pethick and D. G. Ravenhall, Matter at large neutron excess and the physics of neutron-star crusts, Annu. Rev. Nucl. Part. Sci. 45(1), 429 (1995)

    Article  ADS  Google Scholar 

  12. D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Structure of matter below nuclear saturation density, Phys. Rev. Lett. 50(26), 2066 (1983)

    Article  ADS  Google Scholar 

  13. M. Hashimoto, H. Seki, and M. Yamada, Shape of nuclei in the crust of neutron star, Prog. Theor. Phys. 71(2), 320 (1984)

    Article  ADS  Google Scholar 

  14. K. I. Nakazato, K. Oyamatsu, and S. Yamada, Gyroid phase in nuclear pasta, Phys. Rev. Lett. 103(13), 132501 (2009)

    Article  ADS  Google Scholar 

  15. C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, Topological characterization of neutron star crusts, Phys. Rev. C 86(5), 055805 (2012)

    Article  ADS  Google Scholar 

  16. D. K. Berry, M. E. Caplan, C. J. Horowitz G. Huber, and A. S. Schneider, “parking-garage” structures in nuclear astrophysics and cellular biophysics, Phys. Rev. C 94, 055801 (2016)

    Article  ADS  Google Scholar 

  17. R. D. Williams and S. E. Koonin, Sub-saturation phases of nuclear matter, Nucl. Phys. A 435(3–4), 844 (1985)

    Article  ADS  Google Scholar 

  18. K. Oyamatsu, Nuclear shapes in the inner crust of a neutron star, Nucl. Phys. A 561(3), 431 (1993)

    Article  ADS  Google Scholar 

  19. C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Neutron star crusts, Phys. Rev. Lett. 70(4), 379 (1993)

    Article  ADS  Google Scholar 

  20. K. S. Cheng, C. C. Yao, and Z. G. Dai, Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory, Phys. Rev. C 55(4), 2092 (1997)

    Article  ADS  Google Scholar 

  21. G. Watanabe, K. Iida, and K. Sato, Thermodynamic properties of nuclear “pasta” in neutron star crusts, Nucl. Phys. A 676(1–4), 445 (2000)

    ADS  Google Scholar 

  22. G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Microscopic study of slablike and rodlike nuclei: Quantum molecular dynamics approach, Phys. Rev. C 66(1), 012801 (2002)

    Article  ADS  Google Scholar 

  23. G. Watanabe and K. Iida, Electron screening in the liquid-gas mixed phases of nuclear matter, Phys. Rev. C 68(4), 045801 (2003)

    Article  ADS  Google Scholar 

  24. T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, and A. Iwamoto, Quantum molecular dynamics approach to the nuclear matter below the saturation density, Phys. Rev. C 57(2), 655 (1998)

    Article  ADS  Google Scholar 

  25. T. Kido, T. Maruyama, K. Niita, and S. Chiba, MD simulation study for nuclear matter, Nucl. Phys. A 663–664, 877c (2000)

    Article  ADS  Google Scholar 

  26. C. J. Horowitz, M. A. Pérez-Garcia, J. Carriere, D. K. Berry, and J. Piekarewicz, Nonuniform neutron-rich matter and coherent neutrino scattering, Phys. Rev. C 70(6), 065806 (2004)

    Article  ADS  Google Scholar 

  27. W. G. Newton and J. R. Stone, Modeling nuclear “pasta” and the transition to uniform nuclear matter with the 3D Skyrme-Hartree-Fock method at finite temperature: Core-collapse supernovae, Phys. Rev. C 79(5), 055801 (2009)

    Article  ADS  Google Scholar 

  28. S. S. Bao and H. Shen, Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars, Phys. Rev. C 91(1), 015807 (2015)

    Article  ADS  Google Scholar 

  29. K. Oyamatsu, K. Iida, and H. Sotani, Systematic study of pasta nuclei in neutron stars with families of the empirical nuclear equations of state, J. Phys. Conf. Ser. 1643, 012059 (2020)

    Article  Google Scholar 

  30. C. J. Xia, T. Maruyama, N. Yasutake, T. Tatsumi, and J. X. Zhang, Nuclear pasta structures and symmetry energy, arXiv: 2012.01218

  31. N. Chamel and P. Haensel, Physics of neutron star crusts, Living Rev. Relativ. 11(1), 10 (2008)

    Article  ADS  MATH  Google Scholar 

  32. W. G. Newton, J. Hooker, M. Gearheart, K. Murphy, D. H. Wen, F. Fattoyev, and B. A. Li, Constraints on the symmetry energy from observational probes of the neutron star crust, Euro. Phys. J. A 50, 41 (2014)

    Article  ADS  Google Scholar 

  33. M. E. Caplan and C. J. Horowitz, Astromaterial science and nuclear pasta, Rev. Mod. Phys. 89(4), 041002 (2017)

    Article  ADS  Google Scholar 

  34. M. D. Alloy and D. P. Menezes, Nuclear “pasta phase” and its consequences on neutrino opacities, Phys. Rev. C 83(3), 035803 (2011)

    Article  ADS  Google Scholar 

  35. W. G. Newton, K. Murphy, J. Hooker, and B. A. Li, The cooling of the Cassiopeia A neutron star as a probe of the nuclear symmetry energy and nuclear pasta, Astrophys. J. 779(1), L4 (2013)

    Article  ADS  Google Scholar 

  36. A. Roggero, J. Margueron, L. F. Roberts, and S. Reddy, Nuclear pasta in hot dense matter and its implications for neutrino scattering, Phys. Rev. C 97(4), 045804 (2018)

    Article  ADS  Google Scholar 

  37. B. Schuetrumpf, G. Martinez-Pinedo, and P. G. Reinhard, Survey of nuclear pasta in the intermediate-density regime: Structure functions for neutrino scattering, Phys. Rev. C 101(5), 055804 (2020)

    Article  ADS  Google Scholar 

  38. G. Watanabe and C. J. Pethick, Superfluid density of neutrons in the inner crust of neutron stars: New life for pulsar glitch models, Phys. Rev. Lett. 119(6), 062701 (2017)

    Article  ADS  Google Scholar 

  39. J. Hooker, W. G. Newton, and B. A. Li, Efficacy of crustal superfluid neutrons in pulsar glitch models, Mon. Not. R. Astron. Soc. 449(4), 3559 (2015)

    Article  ADS  Google Scholar 

  40. M. E. Caplan, A. S. Schneider, and C. J. Horowitz, Elasticity of nuclear pasta, Phys. Rev. Lett. 121(13), 132701 (2018)

    Article  ADS  Google Scholar 

  41. C. J. Pethick, Z. W. Zhang, and D. N. Kobyakov, Elastic properties of phases with nonspherical nuclei in dense matter, Phys. Rev. C 101(5), 055802 (2020)

    Article  ADS  Google Scholar 

  42. B. Biswas, R. Nandi, P. Char, and S. Bose, Role of crustal physics in the tidal deformation of a neutron star, Phys. Rev. D 100(4), 044056 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  43. F. Gittins, N. Andersson, and J. P. Pereira, Tidal deformations of neutron stars with elastic crusts, Phys. Rev. D 101(10), 103025 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Gearheart, W. G. Newton, J. Hooker, and B. A. Li, Upper limits on the observational effects of nuclear pasta in neutron stars, Mon. Not. R. Astron. Soc. 418(4), 2343 (2011)

    Article  ADS  Google Scholar 

  45. H. Sotani, K. Iida, and K. Oyamatsu, Astrophysical implications of double-layer torsional oscillations in a neutron star crust as a lasagna sandwich, Mon. Not. R. Astron. Soc. 489, 3022 (2019)

    ADS  Google Scholar 

  46. D. H. Wen, W. G. Newton, and B. A. Li, Sensitivity of the neutron star r-mode instability window to the density dependence of the nuclear symmetry energy, Phys. Rev. C 85(2), 025801 (2012)

    Article  ADS  Google Scholar 

  47. I. Vidaña, Nuclear symmetry energy and the r-mode instability of neutron stars, Phys. Rev. C 85(4), 045808 (2012)

    Article  ADS  Google Scholar 

  48. R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896(2), L44 (2020)

    Article  ADS  Google Scholar 

  49. E. R. Most, L. J. Papenfort, L. R. Weih, and L. Rezzolla, A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star, Mon. Not. R. Astron. Soc. Lett. 499(1), L82 (2020)

    Article  ADS  Google Scholar 

  50. N. B. Zhang and B. A. Li, GW190814’s secondary component with mass 2.50–2.67 M as a superfast pulsar, Astrophys. J. 902(1), 38 (2020)

    Article  ADS  Google Scholar 

  51. X. Zhou, A. Li, and B. A. Li, R-mode stability of GW190814’s secondary component as a supermassive and superfast pulsar, arXiv: 2011.11934

Download references

Acknowledgements

B. A. Li is supported in part by the U.S. Department of Energy, Office of Science, under Award Number DE-SC0013702 and the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) under the US Department of Energy Grant No. DE-SC0009971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-An Li.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1043-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BA. Tasting nuclear pasta made with classical molecular dynamics simulations. Front. Phys. 16, 24302 (2021). https://doi.org/10.1007/s11467-020-1043-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1043-8

Navigation