Skip to main content
Log in

First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khan FI, Ghoshal AKr (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Proc Ind 13:527

  2. Zheng J, Yu Y, Mo Z, Zhang Z, Wang X, Yin S, Peng K, Yang Y, Feng X, Cai H (2013) Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci Total Environ 456:127

  3. Probert CS, Ahmed F, Khalid T, Johnson E, Smith S, Ratcliffe N (2009) Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J Gastrointest Liver Dis 18(3):337

  4. Saalberg Y, Wolff M (2016) VOC breath biomarkers in lung cancer. Clin Chim Acta 459:5

  5. Castro M, Kumar B, Feller JF, Haddi Z, Amari A, Bouchikhi B (2011) Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens Actuators, B 159(1):213

  6. Hafaiedh I, El Euch W, Clement P, Llobet E, Abdelghani A (2013) Multi-walled carbon nanotubes for volatile organic compound detection. Sens Actuators, B 182:344

  7. Mochalski P, Sponring A, King J, Unterkofler K, Troppmair J, Amann A (2013) Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro. Cancer Cell Int 13(1):72

  8. Jia Z, Patra A, Kutty VK, Venkatesan T (2019) Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. Metabolites 9(3):52

  9. Perez Locas C, Yaylayan VA (2004) Origin and Mechanistic Pathways of Formation of the Parent Furan–A Food Toxicant. J Agric Food Chem 52(22):6830

  10. Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck N, Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, Weck M, Vinci C, Sobieraj M, Stadler R (2019) Furan and methylfurans in foods: An update on occurrence, mitigation, and risk assessment. Compr Rev Food Sci Food Saf 18(3):738

  11. World Health Organization (2011) Evaluation of certain contaminants in food. In: World Health Organization technical report series 959, 1p

  12. Khalid T, Aggio R, White P, Costello BDL, Persad R, Al-Kateb H, Jones P, Probert CS, Ratcliffe N (2015) Urinary volatile organic compounds for the detection of prostate cancer. PloS One 10:11

  13. Jiménez-Pacheco A, Salinero-Bachiller M, Iribar MC, López-Luque A, Miján-Ortiz JL, Peinado JM (2018) Furan and p-xylene as candidate biomarkers for prostate cancer.  Urol Oncol Semin Original Invest 36:243

  14. Lima AR, Pinto J, Azevedo AI et al (2019) Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br J Cancer 121:857

  15. Hafaiedh I, Helali S, Cherif K, Abdelghani A, Tournier G (2008) Characterization of tin dioxide film for chemical vapors sensor. Mater Sci Eng C 28(5):584

    Article  Google Scholar 

  16. Zhao J, Park H, Han J, Lu JP (2004) Electronic properties of carbon nanotubes with covalent sidewall functionalization. J Phys Chem B 108(14):4227

    Article  CAS  Google Scholar 

  17. Jafari S in Carbon Nanotube-Reinforced Polymers, ed. by R. Rafiee, Micro and Nano Technologies (Elsevier, 2018), pp. 25 – 40

  18. Lee JH, Kang WS, Najeeb CK, Choi BS, Choi SW, Lee HJ, Lee SS, Kim JH (2013) A hydrogen gas sensor using single-walled carbon nanotube Langmuir–Blodgett films decorated with palladium nanoparticles. Sens Actuat B 188:169

  19. Tang S, Chen W, Zhang H, Song Z, Li Y, Wang Y (2020) The functionalized single-walled carbon nanotubes gas sensor with Pd nanoparticles for hydrogen detection in the high-voltage transformers. Front Chem 8:174

    Article  CAS  Google Scholar 

  20. Jana D, Sun CL, Chen L, Chen K (2013) Effect of chemical doping of Boron and Nitrogen on the Electronic, Optical, and Electrochemical properties of Carbon Nanotubes. Prog Mater Sci 58:565

    Article  CAS  Google Scholar 

  21. Gowri Sankar PA, Udhayakumar K (2013) Electronic properties of boron and silicon doped (10, 0) zigzag single-walled carbon nanotube upon gas molecular adsorption: a DFT comparative study. https://doi.org/10.1155/2013/293936

  22. Li W, Lu XM, Li GQ, Ma JJ, Zeng PY, Chen JF, Pan ZL, He QY (2016) First-principle study of SO2 molecule adsorption on Ni-doped vacancy-defected single-walled (8, 0) carbon nanotubes. Appl Surf Sci 364:560

    Article  CAS  Google Scholar 

  23. Luna C, Bechthold P, Brizuela G, Juan A, Pistonesi C (2018) The adsorption of CO, O2 and H2 on Li–doped defective (8, 0) SWCNT: A DFT study. Appl Surf Sci 459:201

    Article  CAS  Google Scholar 

  24. Wan Q, Xu Y, Zhang X (2017) Adsorption properties of typical lung cancer breath gases on Ni-SWCNTs through density functional theory.  J Sens. https://doi.org/10.1155/2017/7974545

  25. Aasi A, Aghaei SM, Panchapakesan B (2020) A density functional theory study on the interaction of toluene with transition metal decorated carbon nanotubes: a promising platform for early detection of lung cancer from human breath. Nanotechnology 31(41):415707

    Article  CAS  Google Scholar 

  26. Soler JM, Artacho E, Gale JD, García A,   Junquera J,  Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745

  27. Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103(9):096102

    Article  Google Scholar 

  28. Klimeš J, Bowler DR, Michaelides A (2010) Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 22(2):022201

  29. Berland K, Hyldgaard P (2014) Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys Rev B Condens Matter Mater Phys 89(3):1

    Article  Google Scholar 

  30. Cooper VR (2010) Van der Waals density functional: An appropriate exchange functional. Phys Rev B Condens Matter Mater Phys 81(16):1

    Google Scholar 

  31. Girifalco L, Lad R (1956) Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J Chem Phys 25(4):693

    Article  CAS  Google Scholar 

  32. Mata F, Martin MC, Sørensen GO (1978) Microwave spectra of deuterated furans. Revised molecular structure of furan.  J Mol Struct 48(2):157

    Article  CAS  Google Scholar 

  33. Igami M, Nakanishi T, Ando T (1999) Conductance of carbon nanotubes with a vacancy. J Phys Soc Jpn 68(3):716

    Article  CAS  Google Scholar 

  34. Ma Y, Lehtinen P, Foster AS, Nieminen RM (2004) Magnetic properties of vacancies in graphene and single-walled carbon nanotubes. New J Phys 6(1):68

    Article  Google Scholar 

  35. Orellana W, Fuentealba P (2006) Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes. Surf Sci 600(18):4305

    Article  CAS  Google Scholar 

  36. Mu J, Ma Y, Liu H, Zhang T, Zhuo S (2019) Optical properties of semiconducting zigzag carbon nanotubes with and without defects. J Chem Phys 150(2):024701

    Article  Google Scholar 

  37. Liu LV, Tian WQ, Wang YA (2009) Ab initio studies of vacancy-defected fullerenes and single-walled carbon nanotubes. Int J Quantum Chem 109(14):3441

    Article  CAS  Google Scholar 

  38. Zanolli Z, Charlier JC (2010) Spin transport in carbon nanotubes with magnetic vacancy-defects. Phys Rev B 81(16):165406

    Article  Google Scholar 

  39. Ali M, Amrane N, Tit N (2020) Relevance of defects in ZnO nanotubes for selective adsorption of H2S and CO2 gas molecules: Ab-initio investigation. Results Phys 16:102907

    Article  Google Scholar 

Download references

Acknowledgements

Ana M. Torres thanks to MINCIENCIAS for the PhD scholarship. The authors thanks to Laboratorio de Simulación y Computación Cienífica, Universidad de Medellín by the computational resources. The authors thanks to Prof. Miguel Eduardo Mora-Ramos for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Correa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, A.M., Correa, J.D. First-principles calculation of volatile organic compound adsorption on carbon nanotubes: Furan as case of study. Carbon Lett. 31, 1061–1070 (2021). https://doi.org/10.1007/s42823-020-00221-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00221-2

Keywords

Navigation