Skip to main content
Log in

Optimizers of the Sobolev and Gagliardo–Nirenberg inequalities in \( \dot{W}^{s,p} \)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the existence of optimizers for the following Sobolev and Gagliardo–Nirenberg intepolation inequalities in \( \dot{W}^{s,p}({\mathbb {R}}^d) \) at the non-endpoint case:

$$\begin{aligned} ||u||_{L^{p^*}} \le C || u||_{ \dot{W}^{s,p}}, \qquad ||u||_{L^r} \le C || u||_{\dot{W}^{s_1,p}}^{\theta } ||u||_{L^p}^{1-\theta }, \end{aligned}$$

where \( \dot{W}^{s,p} ({\mathbb {R}}^d) \) is the fractional Sobolev space, defined by

$$\begin{aligned} \dot{W}^{s,p}({\mathbb {R}}^d) =\bigg \{ u\in L^1_{loc}: \frac{u(x)-u(y)}{|x-y|^{s+\frac{d}{p}}} \in L^p({\mathbb {R}}^d \times {\mathbb {R}}^d) \bigg \}, \end{aligned}$$

and \( 0<s,s_1<1, \) \(1<p,r <\infty , \) \( \frac{1}{p^*}=\frac{1}{p}-\frac{s}{d}>0, \) \( \frac{1}{r}=\theta (\frac{1}{p}-\frac{s_1}{d}) +(1-\theta )\frac{1}{p} .\) Comparing with the usual assumption, we don’t need \( s_1 < \frac{d}{p}, \) i.e., \( p<r < \frac{pd}{d-s_1p} \) if \( \frac{1}{p}-\frac{s_1}{d} >0, \) \( p<r <\infty , \) if \( \frac{1}{p}-\frac{s_1}{d} \le 0. \) To prove these, we establish a compactness up to symmetry lemma in Sobolev embedding for \( \dot{W}^{s,p} \) case by refined Sobolev inequalities in Morrey or Besov space, and we handle the two cases in a unified way. Also for existence of optimizers for Gagliardo–Nirenberg intepolation inequalities in \( \dot{W}^{s,p} \cap L^p, \) we give two alternative proofs: one follows the celebrated paper (Bellazzini et al. in Math Ann 360(3–4):653–673, 2014. https://doi.org/10.1007/s00208-014-1046-2), in which we establish a compactness up to translation lemma in \( \dot{W}^{s,p} \cap L^p; \) one follows the concentrarion compactness principle (Lions in Ann Inst Henri Poincaré Anal Non Linéaire 1(2):109–145, 1984), (Lions in Ann Inst Henri Poincaré Anal Non Linéaire 1(4):223–283 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems. Math. Ann. 360(3–4), 653–673 (2014). https://doi.org/10.1007/s00208-014-1046-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellazzini, J., Ghimenti, M., Mercuri, C., Moroz, V., Van Schaftingen, J.: Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces. Trans. Am. Math. Soc. (2017). https://doi.org/10.1090/tran/7426

    Article  MATH  Google Scholar 

  4. Bellazzini, J., Ghimenti, M., Ozawa, T.: Sharp lower bounds for Coulomb energy. Math. Res. Lett. 23(3), 621–632 (2016)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1(4), 387–404 (2001). (Dedicated to the memory of Tosio Kato)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg inequalities and non-inequalities: the full story. Ann. Inst. Henri Poincaré Anal. Non Linéaire 35(5), 1355–1376 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H., Mironescu, P.: Where Sobolev interacts with Gagliardo–Nirenberg, where Sobolev interacts with Gagliardo–Nirenberg. J. Funct. Anal. 277(8), 2839–2864 (2019)

    Article  MathSciNet  Google Scholar 

  8. Carlen, E.A., Loss, M.: Extremals of functionals with competing symmetries. J. Funct. Anal. 88(2), 437–456 (1990)

    Article  MathSciNet  Google Scholar 

  9. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)

    Article  MathSciNet  Google Scholar 

  10. del Pino, M., Dolbeault, J.: Best constants for Gagliardo–Nirenberg inequalities and application to nonlinear diffusions. J. Math. Pures Appl. 81(9), 847–875 (2002)

    Article  MathSciNet  Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  12. Fanelli, L., Vega, L., Visciglia, N.: Existence of maximizers for Sobolev–Strichartz inequalities. Adv. Math. 229, 1912–1923 (2012)

    Article  MathSciNet  Google Scholar 

  13. Frank, R.L., Lieb, E.H.: Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality. Calc. Var. Partial Differ. Equ. 39(1–2), 85–99 (2010)

    Article  MathSciNet  Google Scholar 

  14. Frank, R.L., Lieb, E.H.: Spherical reflection positivity and the Hardy–Littlewood–Sobolev inequality. In: Houdré, C. (ed.) Concentration, Functional Inequalities and Isoperimetry, Contemporary Mathematics, vol. 545. Providence, RI (2011)

    Google Scholar 

  15. Frank, R.L., Lieb, E.H.: A new rearrangement-free proof of the sharp Hardy–Littlewood–Sobolev inequality. In: Brown, B.M. (ed.) Operator Theory: Advances and Applications. Spectral Theory, Function Spaces and Inequalities, vol. 219, pp. 55–67. Birkhäuser, Basel (2012)

    Google Scholar 

  16. Frank, R.L., Lieb, E.H., Sabin, J.: Maximizers for the Stein–Tomas inequality. Geom. Funct. Anal. 26, 1095–1134 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. i. the one-electron atom. Commun. Math. Phys. 104(2), 251–270 (1986)

    Article  MathSciNet  Google Scholar 

  18. Haroske, D.D., Skrzypczak, L.: On Sobolev and Franke–Jawerth embeddings of smoothness Morrey spaces. Rev. Mat. Comput. 27(2), 541–573 (2014)

    Article  MathSciNet  Google Scholar 

  19. Gagliardo, E.: Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7, 102–137 (1958)

    MathSciNet  MATH  Google Scholar 

  20. Gérard,P., Meyer,Y., Oru,F.: Inégalités de Sobolev précisées, (French., Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. IV, École Polytech. Palaiseau (1997)

  21. Grafakos, L.: Classical Fourier analysis. In: Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, New York (2014)

    Google Scholar 

  22. Grafakos, L.: Modern Fourier analysis. In: Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)

    Google Scholar 

  23. Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983a)

    Article  MathSciNet  Google Scholar 

  24. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983b)

    Article  MathSciNet  Google Scholar 

  25. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  26. Lions, P.-L.: The concentration-compactness principle in the calculus of variations The locally compact case. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  27. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. Rev. Mat. Iberoam. 1(1), 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  28. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. Rev. Mat. Iberoam. 1(2), 45–121 (1985)

    Article  MathSciNet  Google Scholar 

  29. Maz’ya, V., Shaposhnikova, T.: On pointwise interpolation inequalities for derivatives. Math. Bohem. 124, 131–148 (1999)

    Article  MathSciNet  Google Scholar 

  30. Mercuri, C., Moroz, V., Van Schaftingen, J.: Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency. Calc. Var. Partial Differ. Equ. 55(6), 146 (2016). https://doi.org/10.1007/s00526-016-1079-3

    Article  MATH  Google Scholar 

  31. Nahas, J., Ponce, G.: On the persistent properties of solutions to semi-linear Schrödinger equation. Commun. PDE 34, 1–20 (2009)

    Article  Google Scholar 

  32. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa. 13(3), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  33. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

    Article  MathSciNet  Google Scholar 

  34. Struwe, M.: Variational methods applications to nonlinear partial differential equations and Hamiltonian systems. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  35. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. In: CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (2006)

  36. Triebel, H.: Function Spaces and Wavelets on Domains. EMS Publishing House, Zürich (2008)

    Book  Google Scholar 

  37. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)

    Article  Google Scholar 

  38. Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc., Boston (1996)

    Google Scholar 

Download references

Acknowledgements

The author Y. Zhang appreciates the help from Professor J. Bellazzini, and the author would like to thank the anonymous referee for his/her valuable suggestions. Y. Zhang is supported by Postdoctoral Scientific Research Foundation of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Optimizers of the Sobolev and Gagliardo–Nirenberg inequalities in \( \dot{W}^{s,p} \). Calc. Var. 60, 10 (2021). https://doi.org/10.1007/s00526-021-01917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01917-7

Mathematics Subject Classification

Navigation