Skip to main content
Log in

On the Motion of Stars in the Pleiades According to Gaia DR2 Data

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—Several parameters of the Pleiades cluster were estimated. We used Gaia DR2 data on the coordinates, proper motions, and radial velocities of stars in regions with radius d° =2.5° and size 60° × 60° around the cluster center. Based on data on stars with magnitudes mG ≤ 18m, we constructed a map and profile of the density, luminosity and mass functions of the cluster, determined the cluster radius, 10.9° ± 0.3° (26.3 ± 0.7 pc), and the radius of its core, 2.62° (6.24 pc), and obtained estimates for the number of stars in the cluster, 1542 ± 121, and their mass, 855 ± 104M; numbers of stars in the core of the cluster, 1097 ± 77, and their mass 665 ± 71M. Distribution of stars with mG < 16m at distances rs from the cluster center in three-dimensional space of rs < 1 pc and at rs ∼ 1.4–5 pc contains radial density waves. Based on the data on stars with mG < 16m, we determined the average rotation velocity of the core of the cluster vc = 0.56 ± 0.07 km s−1 at distances d in the sky plane d ≤ 4.6 pc from its center. The rotation is “prograde”, the angle between the projection of the axis of rotation of the cluster core onto the sky plane and the direction to the North Pole of the Galaxy is ϕ = 18.8° ± 4.4°, the angle between the axis of rotation of the cluster core and the sky plane is ϑ = 43.2° ± 4.9°, the rotation velocity of the cluster core at a distance of d ≃ 5.5pc from its center is close to zero: vc = 0.1 ± 0.3 km s−1. According to the data on stars with mG < 17m, the velocity of the “retrograde” rotation of the cluster at a distance of d ≃ 7.1 pc from its center is vc = 0.48 ± 0.20 km s−1, the angle ϕ = 37.8° ± 26.4°. The dependences of moduli of the tangential and radial components of the velocity field of the stars of the cluster core in the sky plane on the distance d to the center of the cluster contain a number of periodic oscillations. The dispersions of the velocities of the stars in the cluster core σv increase on average with an increase in rs, which, like the radial density waves and the waves of oscillations of the velocity field in the sky plane, indicates the nonstationarity of the cluster in the field of regular forces. The Jeans wavelength in the cluster core decreases, and the velocity dispersion of the stars in the core under the Jeans instability increases after taking into account the influence of the external field of the Galaxy on the cluster. The region of gravitational instability in the Pleiades cluster is located in the interval rs = 2.2–5.7 pc and contains 39.4–60.5% of the total number of stars in the considered samples of cluster stars. Estimates of the Pleiades dynamic mass and tidal radius are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. https://webda.physics.muni.cz/.

REFERENCES

  1. S. J. Aarseth, Astron. and Astrophys. 35 (2), 237 (1974).

    ADS  Google Scholar 

  2. J. D. Adams, J. R. Stauffer, D. G. Monet, et al., Astron. J. 121 (4), 2053 (2001).

    Article  ADS  Google Scholar 

  3. J. D. Adams, J. R. Stauffer, M. F. Skrutskie, et al., Astron. J. 124 (3), 1570 (2002).

    Article  ADS  Google Scholar 

  4. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  5. G. Carraro, G. Baume, A. F. Seleznev, and E. Costa, Astrophys. and Space Sci. 362 (7), 128 (2017).

    Article  ADS  Google Scholar 

  6. G. Carraro and A. F. Seleznev, Monthly Notices Royal Astron. Soc. 419 (4), 3608 (2012).

    Article  ADS  Google Scholar 

  7. G. Carraro, A. F. Seleznev, G. Baume, and D. G. Turner, Monthly Notices Royal Astron. Soc. 455 (4), 4031 (2016).

    Article  ADS  Google Scholar 

  8. S. Chandrasekhar, Principles of stellar dynamics (University of Chicago Press, Chicago, 1942).

    MATH  Google Scholar 

  9. W. S. Cleveland and S. J. Devlin, Journal of the American Statistical Association 83 (403), 596 (1988).

    Article  Google Scholar 

  10. V. M. Danilov, Astrofizika 13, 685 (1977).

    ADS  Google Scholar 

  11. V. M. Danilov, Astronomy Reports 52 (11), 888 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. M. Danilov, Astronomy Reports 54 (6), 514 (2010).

    Article  ADS  Google Scholar 

  13. V. M. Danilov, Astronomy Reports 55 (6), 473 (2011).

    Article  ADS  Google Scholar 

  14. V. M. Danilov and L. V. Dorogavtseva, Astronomy Reports 47 (6), 483 (2003).

    Article  ADS  Google Scholar 

  15. V. M. Danilov and L. V. Dorogavtseva, Astronomy Reports 52 (6), 467 (2008).

    Article  ADS  Google Scholar 

  16. V. M. Danilov and A. V. Loktin, Astrophysical Bulletin 70 (4), 414 (2015).

    Article  ADS  Google Scholar 

  17. V. M. Danilov and S. I. Putkov, Astronomy Reports 56 (8), 623 (2012).

    Article  ADS  Google Scholar 

  18. V. M. Danilov and S. I. Putkov, Astrophysical Bulletin 72 (3), 266 (2017).

    Article  ADS  Google Scholar 

  19. V. M. Danilov, S. I. Putkov, and A. F. Seleznev, Astronomy Reports 58 (12), 906 (2014).

    Article  ADS  Google Scholar 

  20. V. M. Danilov and A. P. Ryazanov, in Astronomical-Geodetical Investigations, pp. 19– 47 (1985).

    Google Scholar 

  21. Gaia Collaboration, A. G. A. Brown, A. Vallenari, et al., Astron. and Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  22. Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, et al., Astron. and Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  23. W. A. Hiltner, Astronomical techniques, vol. 2 (University of Chicago Press, Chicago, 1962).

    Google Scholar 

  24. F. J. Kerr and D. Lynden-Bell, Monthly Notices Royal Astron. Soc. 221, 1023 (1986).

    Article  ADS  Google Scholar 

  25. N. V. Kharchenko, A. E. Piskunov, E. Schilbach, et al., Astron. and Astrophys. 558, A53 (2013).

    Article  ADS  Google Scholar 

  26. P. N. Kholopov, Stellar Clusters (Nauka, Moscow, 1981).

    Google Scholar 

  27. I. R. King, An Introduction to Classical Stellar Dynamics (University of California, Berkeley, 1994).

  28. G. A. Korn and T. M. Korn, Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review (McGraw-Hill, New York, 1968).

  29. P. Kroupa, Monthly Notices Royal Astron. Soc. 322 (2), 231 (2001).

    Article  ADS  Google Scholar 

  30. S. A. Kutuzov and L. P. Osipkov, Sov. Astron. 24, 17 (1980).

    ADS  Google Scholar 

  31. L. D. Landau and E. M. Lifshitz, Mechanics (FIZMATLIT, Moscow, 2004), 5-th edition.

    MATH  Google Scholar 

  32. N. Lodieu, A. Perez-Garrido, R. L. Smart, and R. Silvotti, Astron. and Astrophys. 628, A66 (2019).

    Article  ADS  Google Scholar 

  33. A. V. Loktin and M. E. Popova, Astrophysical Bulletin 72 (3), 257 (2017).

    Article  ADS  Google Scholar 

  34. V. V. Makarov, Astron. J. 131 (6), 2967 (2006).

    Article  ADS  Google Scholar 

  35. P. Marigo, L. Girardi, A. Bressan, et al., Astrophys. J. 835 (1), 77 (2017).

    Article  ADS  Google Scholar 

  36. D. Raboud and J. C. Mermilliod, Astron. and Astrophys. 329, 101 (1998).

    ADS  Google Scholar 

  37. D. J. Ross, A. Mennim, and D. C. Heggie, Monthly Notices Royal Astron. Soc. 284 (4), 811 (1997).

    Article  ADS  Google Scholar 

  38. R. Sagar and H. C. Bhatt, Monthly Notices Royal Astron. Soc. 236, 865 (1989).

    Article  ADS  Google Scholar 

  39. A. F. Seleznev, Astronomy Reports 42 (2), 153 (1998).

    ADS  Google Scholar 

  40. A. F. Seleznev, Baltic Astronomy 25, 267 (2016a).

    ADS  Google Scholar 

  41. A. F. Seleznev, Monthly Notices Royal Astron. Soc. 456 (4), 3757 (2016b).

    Article  ADS  Google Scholar 

  42. A. F. Seleznev, G. Carraro, R. Capuzzo-Dolcetta, et al., Monthly Notices Royal Astron. Soc. 467 (3), 2517 (2017).

    Article  ADS  Google Scholar 

  43. I. M. Sobol’, Monte Carlo method, 46 (Nauka, Moscow, 1985).

    MATH  Google Scholar 

  44. L. G. Taff, Astron. J. 79, 1280 (1974).

    Article  ADS  Google Scholar 

  45. F. van Leeuwen, Proc. IAU Symposium, 85, 157 (1980).

  46. S. V. Vereshchagin, V. G. Reva, and N. V. Chupina, Astronomy Reports 57 (1), 52 (2013).

    Article  ADS  Google Scholar 

  47. F. C. Yeh, G. Carraro, M. Montalto, and A. F. Seleznev, Astron. J. 157 (3), 115 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. A. Popov, a researcher at the Astronomical Observatory of the Ural Federal University, who pointed out the possibility of the influence of the OSC motion, perpendicular to the line of sight, on the radial velocities of the cluster stars.

This work used data from the European Space Agency (ESA) Gaia mission (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for DPAC was provided by national institutions, in particular institutions participating in the Gaia multilateral agreement.

Funding

This work was supported by the Ministry of Science and Higher Education, FEUZ-2020-0030. This work was supported in part by the Act no. 211 of the Government of the Russian Federation, agreement no. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Danilov or A. F. Seleznev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.M., Seleznev, A.F. On the Motion of Stars in the Pleiades According to Gaia DR2 Data. Astrophys. Bull. 75, 407–424 (2020). https://doi.org/10.1134/S1990341320040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320040045

Keywords:

Navigation