Skip to main content
Log in

MrPEX33 is involved in infection-related morphogenesis and pathogenicity of Metarhizium robertsii

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Peroxisomes, being indispensable organelles, play an important role in different biological processes in eukaryotes. PEX33, a filamentous fungus-specific peroxin of the docking machinery of peroxisomes, is involved in the virulence and development of other fungal pathogens. However, it is not clear whether PEX33 is necessary for the pathogenicity and development of an insect pathogenic fungus. In the present study, we report the presence of homologs of PEX33, namely MrPEX33 (MAA_05331), in the entomopathogenic fungus, Metarhizium robertsii. An M. robertsii transgenic strain expressing the fusion protein with MrPEX33-GFP and mCherry-PTS1 showed that MrPEX33 localizes to peroxisomes. The results also demonstrated that MrPEX33 is involved in the peroxisomal import pathway by peroxisomal targeting signals. Targeted gene deletion of MrPEX33 led to a significant decline in the asexual sporulation capacity, which was accompanied by downregulation of several conidiation-associated genes, such as wetA, abaA, and brlA. More importantly, our bioassay results showed that the virulence of ∆MrPEX33 mutants, against Galleria mellonella through cuticle infection, was greatly reduced. This was further accompanied by a significant drop in appressorium formation and cuticle penetration. Additionally, ∆MrPEX33 mutants showed a significant decrease in tolerance to cell wall integrity and oxidative stress. Taken together, our results suggest that MrPEX33 is involved in the cuticle infection-related morphogenesis and pathogenicity.

Key points

MrPEX33 is a specific peroxin of the docking machinery of peroxisomes.

MrPEX33 localizes to peroxisomes and is involved in the import of matrix proteins.

MrPEX33 is involved in the pathogenicity associated with cuticle infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Chen XL, Wang Z, Liu CY (2016a) Roles of peroxisomes in the rice blast fungus. Biomed Res Int 2016:9343417

    PubMed  PubMed Central  Google Scholar 

  • Chen XX, Xu C, Qian Y, Liu R, Zhang QQ, Zeng GH, Zhang X, Zhao H, Fang WG (2016b) MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environ Microbiol 18(3):1048–1062

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zheng SY, Ju ZZ, Zhang CQ, Tang GF, Wang J, Wen ZY, Chen W, Ma ZH (2018) Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum. Environ Microbiol 20(9):3224–3245

    Article  CAS  PubMed  Google Scholar 

  • Deng SZ, Gu ZK, Yang N, Li L, Yue XF, Que YW, Sun GC, Wang ZY, Wang JY (2016) Identification and characterization of the peroxin 1 gene MoPEX1 required for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Sci Rep 6:36292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW, Kiel JA, Kunau WH, Lazarow PB, Mannaerts GP, Moser HW, Osumi T, Rachubinski RA, Roscher A, Subramani S, Tabak HF, Tsukamoto T, Valle D, van der Klei I, van Veldhoven PP, Veenhuis M (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Du YR, Jin K, Xia YX (2018) Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Appl Microbiol Biotechnol 102(13):5611–5623

    Article  CAS  PubMed  Google Scholar 

  • Duan ZB, Chen YX, Huang W, Shang YF, Chen PL, Wang CS (2013) Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 9(4):538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang WG, Bidochka MJ (2006) Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycol Res 110:1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Fang WG, Azimzadeh P, St Leger RJ (2012) Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol 15(3):232–238

    Article  PubMed  Google Scholar 

  • Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O’Connell R, Kubo Y (2010) Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Mol Plant-Microbe Interact 23(4):436–445

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Shang YF, Huang W, Wang CS (2013) Glycerol-3-phosphate acyltransferase contributes to triacylglycerol biosynthesis, lipid droplet formation, and host invasion in Metarhizium robertsii. Appl Environ Microbiol 79(24):7646–7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Lu YZ, Yao HY, Xu YJ, Huang W, Wang CS (2016) Phospholipid homeostasis maintains cell polarity, development and virulence in Metarhizium robertsii. Environ Microbiol 18(11):3976–3990

    Article  CAS  PubMed  Google Scholar 

  • Girzalsky W, Rehling P, Stein K, Kipper J, Blank L, Kunau WH, Erdmann R (1999) Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J Cell Biol 144(6):1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SJ, McCollum D, Spong AP, Heyman JA, Subramani S (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8(8):613–628

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI (1996) Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J Cell Biol 135(1):85–95

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Qian Y, Zhang Q, Chen X, Zeng G, Zhang X, Mi W, Xu C, St. Leger RJ, Fang W (2017) Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nat Commun 8(1):1565

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27(1):35–64

    Article  CAS  PubMed  Google Scholar 

  • Hu JP, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24(6):2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Shang YF, Chen PL, Cen K, Wang CS (2015) Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J Biol Chem 290(13):8218–8231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huarte-Bonnet C, Paixao FRS, Ponce JC, Santana M, Prieto ED, Pedrini N (2018) Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations. Fungal Biol 122(6):457–464

    Article  CAS  PubMed  Google Scholar 

  • Huarte-Bonnet C, Paixao FRS, Mascarin GM, Santana M, Fernandes EKK, Pedrini N (2019) The entomopathogenic fungus Beauveria bassiana produces microsclerotia-like pellets mediated by oxidative stress and peroxisome biogenesis. Environ Microbiol Rep 11(4):518–524

    Article  CAS  PubMed  Google Scholar 

  • Kiel J, Veenhuis M, van der Klei IJ (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7(10):1291–1303

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13(8):1945–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong XJ, Zhang H, Wang XL, van Der Lee T, Waalwijk C, van Diepeningen A, Brankovics B, Xu J, Xu JS, Chen WQ, Feng J (2019) FgPex3, a peroxisome biogenesis factor, is involved in regulating vegetative growth, conidiation, sexual development, and virulence in Fusarium graminearum. Front Microbiol 10:2088

    Article  PubMed  PubMed Central  Google Scholar 

  • Li GH, Fan AN, Peng GX, Keyhani NO, Xin JK, Cao YQ, Xia YX (2017a) A bifunctional catalase-peroxidase, MakatG1, contributes to virulence of Metarhizium acridum by overcoming oxidative stress on the host insect cuticle. Environ Microbiol 19(10):4365–4378

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang JY, Chen HL, Chai RY, Zhang Z, Mao XQ, Qiu HP, Jiang H, Wang YL, Sun GC (2017b) Pex14/17, a filamentous fungus-specific peroxin, is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae. Mol Plant Pathol 18(9):1238–1252

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Managadze D, Wurtz C, Wiese S, Schneider M, Girzalsky W, Meyer HE, Erdmann R, Warscheid B, Rottensteiner H (2010) Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa. Eur J Cell Biol 89(12):955–964

    Article  CAS  PubMed  Google Scholar 

  • Meng YM, Zhang X, Guo N, Fang WG (2019) MrSt12 implicated in the regulation of transcription factor AFTF1 by Fus3-MAPK during cuticle penetration by the entomopathogenic fungus Metarhizium robertsii. Fungal Genet Biol 131:103244

    Article  CAS  PubMed  Google Scholar 

  • Min K, Son H, Lee J, Choi GJ, Kim JC, Lee YW (2012) Peroxisome function is required for virulence and survival of Fusarium graminearum. Mol Plant-Microbe Interact 25(12):1617–1627

    Article  CAS  PubMed  Google Scholar 

  • Nair DM, Purdue PE, Lazarow PB (2004) Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. J Cell Biol 167(4):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opalinski L, Kiel J, Homan TG, Veenhuis M, van der Klei IJ (2010) Penicillium chrysogenum Pex14/17p-a novel component of the peroxisomal membrane that is important for penicillin production. FEBS J 277(15):3203–3218

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2016) Molecular genetics of Beauveria bassiana infection of insects. Adv Genet 94:165–249

    Article  CAS  PubMed  Google Scholar 

  • Padilla-Guerrero IE, Bidochka MJ (2017) Agrobacterium-mediated co-transformation of multiple genes in Metarhizium robertsii. Mycobiology 45(2):84–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedrini N, Crespo R, Juarez MP (2007) Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Biochem Physiol C-Toxicol Pharmacol 146(1-2):124–137

    Article  Google Scholar 

  • Pedrini N, Zhang S, Juarez MP, Keyhani NO (2010) Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiol-SGM 156(8):2549–2557

    Article  CAS  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos-Pamplona M, Naqvi NI (2006) Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol 61(1):61–75

    Article  CAS  PubMed  Google Scholar 

  • Schell-Steven A, Stein K, Amoros M, Landgraf C, Volkmer-Engert R, Rottensteiner H, Erdmann R (2005) Identification of a novel, intraperoxisomal Pex14-binding site in Pex13: association of Pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol Cell Biol 25(8):3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibirny AA (2016) Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 16(4):fow038

    Article  PubMed  Google Scholar 

  • St Leger RJ, Wang CS (2010) Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol 85(4):901–907

    Article  CAS  PubMed  Google Scholar 

  • Subramani S (1993) Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol 9:445–478

    Article  CAS  PubMed  Google Scholar 

  • Subramani S, Koller A, Snyder WB (2000) Import of peroxisomal matrix and membrane proteins. Annu Rev Biochem 69:399–418

    Article  CAS  PubMed  Google Scholar 

  • Titorenko VI, Rachubinski RA (2001) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2(5):357–368

    Article  CAS  PubMed  Google Scholar 

  • van der Klei IJ, Veenhuis M (2006) Yeast and filamentous fungi as model organisms in microbody research. Biochim Biophys Acta 1763(12):1364–1373

    Article  PubMed  Google Scholar 

  • Wang CS, Wang SB (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62:73–90

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhou Q, Li Y, Qiao L, Pang Q, Huang B (2018) iTRAQ-based quantitative proteomic analysis of conidia and mycelium in the filamentous fungus Metarhizium robertsii. Fungal Biol 122(7):651–658

    Article  PubMed  Google Scholar 

  • Wang JY, Li L, Chai RY, Qiu HP, Zhang Z, Wang YL, Liu XH, Lin FC, Sun GC (2019a) Pex13 and Pex14, the key components of the peroxisomal docking complex, are required for peroxisome formation, host infection and pathogenicity-related morphogenesis in Magnaporthe oryzae. Virulence 10(1):292–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Jiang Y, Li Y, Feng J, Huang B (2019b) MrArk1, an actin-regulating kinase gene, is required for endocytosis and involved in sustaining conidiation capacity and virulence in Metarhizium robertsii. Appl Microbiol Biotechnol 103(12):4859–4868

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jiang Y, Wu H, Xie X, Huang B (2019c) Genome-wide identification and functional prediction of long non-coding RNAs involved in the heat stress response in Metarhizium robertsii. Front Microbiol 10:2336

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhu H, Cheng Y, Jiang Y, Li Y, Huang B (2019d) The polyubiquitin gene MrUBI4 is required for conidiation, conidial germination, and stress tolerance in the filamentous fungus Metarhizium robertsii. Genes 10(6):412

    Article  CAS  PubMed Central  Google Scholar 

  • Xie X, Wang Y, Yu D, Xie R, Liu Z, Huang B (2020) DNM1, a dynamin-related protein that contributes to endocytosis and peroxisome fission, is required for the vegetative growth, sporulation, and virulence of Metarhizium robertsii. Appl Environ Microbiol 86(17):e01217–e01220

    Article  CAS  PubMed  Google Scholar 

  • Yang WJ, Wu H, Wang ZX, Sun Q, Qiao LT, Huang B (2018) The APSES gene MrStuA regulates sporulation in Metarhizium robertsii. Front Microbiol 9:1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue XF, Que YW, Xu L, Deng SZ, Peng YL, Talbot NJ, Wang ZY (2016) ZNF1 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation by the rice blast fungus Magnaporthe oryzae. Mol Plant-Microbe Interact 29(1):22–35

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Chen X, Zhang X, Zhang Q, Xu C, Mi W, Guo N, Zhao H, You Y, Dryburgh F-J, Bidochka MJ, St Leger RJ, Zhang L, Fang W (2017) Genome-wide identification of pathogenicity, conidiation and colony sectorization genes in Metarhizium robertsii. Environ Microbiol 19(10):3896–3908

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO (2012) CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus Beauveria bassiana. J Biol Chem 287(16):13477–13486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Geng LP, Huang LH, Deng JL, Fasoyin OE, Yao GS, Wang SH (2018) Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the fungus Aspergillus flavus. Curr Genet 64(6):1335–1348

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang LN, Liang YC, Yu JF (2019) FgPEX4 is involved in development, pathogenicity, and cell wall integrity in Fusarium graminearum. Curr Genet 65(3):747–758

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was jointly supported by the National Natural Science Foundation of China (grant numbers: 31772226, 31572060, and 31972332), the Key Project for Natural Science Research of Anhui Provincial Higher School (Grant numbers: KJ2019A0192), the Project for Excellent Young Talents in Universities of Anhui Province (grant numbers: gxyqZD2020007), and the Innovation Foundation for Postgraduates of Anhui Agricultural University (grant numbers: 2020ysj-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: ZW and BH. Performed the experiments: JF, YJ, XX, and LX. Analyzed the data: XX, LX, and QZ. Contributed reagents/materials/analysis tools: JF, YJ, XX, LX, and QZ. Wrote the paper: ZW and BH. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bo Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Feng, J., Jiang, Y. et al. MrPEX33 is involved in infection-related morphogenesis and pathogenicity of Metarhizium robertsii. Appl Microbiol Biotechnol 105, 1079–1090 (2021). https://doi.org/10.1007/s00253-020-11071-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-11071-3

Keywords

Navigation