Skip to main content
Log in

MRI Coils Optimized for Detection of 1H and 23Na at 0.5 T

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Experiments on proton and sodium MRI at 0.5 T are described to assess the sensitivity of various types of coils, namely solenoidal, surface, volumetric, and with specific complex geometry. Each type of coil, characterized by its geometric specificity, was built to record MR signal of protons (1H) and sodium (23Na) at 21.1 MHz and 5.6 MHz, respectively. Sodium coils were initially built for 1H MRI and modified for 23Na MRI. Measurements in a container phantom filled with a 12% salt solution showed that the quality factor and sensitivity of various type coils approximately coincide at both sodium and proton resonance frequencies. The possibility of using data on SNR for a highly concentrated sample and Q-factor measurements to predict MRI results for a weakly concentrated sample is considered. These measurements represent a guide for extension to multinuclear whole body low field MRI clinical platform that is usually designed to operate in proton mode only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.C. Niesporek, A.M. Nagel, T. Platt, Top. Magn. Reson. Imaging 28(3), 173–188 (2019)

    Article  Google Scholar 

  2. G. Madelin, J.-S. Lee, R.R. Regatte, A. Jerschow, Progr. Nucl. Magn. Reson. Spectrosc. 79, 14–47 (2014)

    Article  Google Scholar 

  3. D. Burstein, C.S. Springer Jr., Magn. Reson. Med. 82(2), 521–524 (2019)

    Article  Google Scholar 

  4. E.A. Mellon, D.T. Pilkinton, C.M. Clark, M.A. Elliott, W.R. Witschey 2nd., A. Borthakur, R. Reddy, Am. J. Neuroradiol. 30(5), 978–984 (2009)

    Article  Google Scholar 

  5. K. Reetz, S. Romanzetti, I. Dogan, C. Saβ, K.J. Werner, J. Schiefer, J.B. Schulz, N.J. Shah, NeuroImage 63(1), 517–524 (2012)

    Article  Google Scholar 

  6. M.V. Karg, A. Bosch, D. Kannenkeril, K. Striepe, C. Ott, M.P. Schneider, F. Boemke-Zelch, P. Linz, A.M. Nagel, J. Titze, M. Uder, R.E. Schmieder, Cardiovasc. Diabetol. 17(5), 1–8 (2018). https://doi.org/10.1186/s12933-017-0654-z

    Article  Google Scholar 

  7. M. Christa, A.M. Weng, B. Geier, C. Wormann, A. Scheffler, L. Lehmann, J. Oberberger, B.J. Kraus, S. Hahner, S. Stork, T. Klink, W.R. Bauer, F. Hammer, H. Kostler, Eur. Heart J. Cardiovasc. Imaging 20(3), 263–270 (2019). https://doi.org/10.1093/ehjci/jey134

    Article  Google Scholar 

  8. E.M. Haacke, R.W. Brown, M.R. Thompson, R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, Hoboken, 1999) Chapters 9, 15, 17, 27

    Google Scholar 

  9. M.E. Ladd, P. Bachert, M. Meyerspeer, E. Moser, A.M. Nagel, D.G. Norris, S. Schmitter, O. Speck, S. Straub, M. Zaiss, Progr. Nucl. Magn. Reson. Spectrosc. 109, 1–50 (2018)

    Article  Google Scholar 

  10. K. Halbach, Nucl. Instrum. Methods 169, 1–10 (1980)

    Article  ADS  Google Scholar 

  11. C.Z. Cooley, M.W. Haskell, S.F. Cauley, C. Sappo, C.D. Lapierre, C.G. Ha, J.P. Stockmann, L.L. Wald, IEEE Trans. Magn. 54(1), 5100112 (2018)

    Article  Google Scholar 

  12. N. Anisimov, D. Volkov, M. Gulyaev, O. Pavlova, Yu. Pirogov, J. Phys. Conf. Ser. 677, 012005 (2016)

    Article  Google Scholar 

  13. N.V. Anisimov, O.S. Pavlova, A.G. Agafonnikova, A.V. Kosenkov, D.V. Fomina, Appl. Magn. Reson. 50(1–3), 17–27 (2019)

    Article  Google Scholar 

  14. N. Ishida, T. Kobayashi, H. Kano, S. Nagai, H. Ogawa, Agric. Biol. Chem. 55(9), 2195–2200 (1991)

    Google Scholar 

  15. M. Robson, P. Gatehouse, M. Bydder, M. Graeme, J. Comput. Assist. Tomogr. 27(6), 825–846 (2003)

    Article  Google Scholar 

  16. D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71–85 (1976)

    ADS  Google Scholar 

  17. F. Wetterling, D.M. Corteville, R. Kalayciyan, A. Rennings, S. Konstandin, A.M. Nagel, H. Stark, L.R. Schad, Phys. Med. Biol. 57(14), 4555–4567 (2012)

    Article  Google Scholar 

  18. K.M. Gilbert, T.J. Scholl, B.A. Chronik, Concepts Magn. Reson. Part B Magn. Reson. Eng. 33B(3), 177–191 (2008)

    Article  Google Scholar 

  19. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  20. N.V. Anisimov, E.G. Sadykhov, O.S. Pavlova, D.V. Fomina, Yu.A. Pirogov, Appl. Magn. Reson. 50(10), 1149–1161 (2019)

    Article  Google Scholar 

  21. R.K. Gupta, J. Magn. Reson. 25(1), 231–235 (1977)

    ADS  Google Scholar 

  22. H.Z. Wang, S.J. Riederer, J.N. Lee, Magn. Reson. Med. 5(5), 399–416 (1987)

    Article  Google Scholar 

  23. A. Kumar, P.A. Bottomley, MAGMA 21(1–2), 41–52 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by RFBR grants 19-29-10015 and 20-52-10004. G.E.P. thanks the Medical Research Council (Grant # MC_PC_15074) and the Royal Society (Grant # EC\R2\192175) for funding of sodium imaging methodology development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Anisimov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, N.V., Tarasova, A.A., Pavlova, O.S. et al. MRI Coils Optimized for Detection of 1H and 23Na at 0.5 T. Appl Magn Reson 52, 221–233 (2021). https://doi.org/10.1007/s00723-020-01306-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01306-x

Navigation