Skip to main content

Advertisement

Log in

Coastal Vulnerability under Extreme Weather

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

Communities like Santa Barbara, California appear to have it all – beaches, mountains, sunshine, moderate temperatures, small urban population, and close proximity to the large metropolis of Los Angeles. What is not to love? Climate change, drought, flammable vegetation, and naturally prevailing weather conditions make a significant portion of the population vulnerable in many ways. Earthquakes and tsunamis might come to mind, but perhaps more of a threat is fire and/or flooding at, on or near the wildland-urban interface. The recent Thomas fire in December of 2017 and subsequent flooding, debris flow and mudslides in Montecito that followed in January of 2018 highlight what coastal vulnerability means under the new normal of extreme wildfire and flooding danger for this region. This paper discusses the unique hazards along with local weather conditions that contribute to vulnerability. We then detail spatial analytics to assess, model and predict risks. Insights are offered for the Santa Barbara region associated with extreme weather vulnerabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Summerland figure not included as it is not recognized by the Census as a designated place.

  2. Information compiled from County of Santa Barbara (2019b) and State of California (2013).

References

  • Agee, J. K. (1993). Fire ecology of Pacific northwest forests. Island Press.

  • Arno, S. F., & Allison-Bunnell, S. (2002). Flames in our forest: Disaster or renewal? Island Press.

  • Barro, S. C., & Conard, S. G. (1991). Fire effects on California chaparral systems: An overview. Environment International, 17(2–3), 135–149.

    Article  Google Scholar 

  • Beven, K. J. (2011). Rainfall-runoff modelling: The primer. New York: John Wiley & Sons.

    Google Scholar 

  • Blier, W. (1998). The sundowner winds of Santa Barbara, California. Weather and Forecasting, 13(3), 702–716.

    Article  Google Scholar 

  • Brachman, M. L., & Dragicevic, S. (2014). A spatially explicit network science model for emergency evacuations in an urban context. Computers, Environment and Urban Systems, 44, 15–26.

    Article  Google Scholar 

  • Brinkmann, W. A. R. (1971). What is a foehn? Weather, 26(6), 230–240.

    Article  Google Scholar 

  • Cannon, F., Hecht, C. W., Cordeira, J. M., & Ralph, F. M. (2018). Synoptic and Mesoscale forcing of Southern California extreme precipitation. Journal of Geophysical Research: Atmospheres, 123(24), 13–714.

    Google Scholar 

  • Cannon, F., Carvalho, L. M., Jones, C., Hall, T., Gomberg, D., Dumas, J., & Jackson, M. (2017). WRF simulation of downslope wind events in coastal Santa Barbara County. Atmospheric Research, 191, 57–73.

    Article  Google Scholar 

  • Carvalho, L., Duine, G. J., Jones, C., Zigner, K., Clements, C., Kane, H., Gore, C., Bell, G., Gamelin, B., Gomberg, D., & Hall, T. (2020). The sundowner winds experiment (SWEX) pilot study: Understanding downslope windstorms in the Santa Ynez Mountains, Santa Barbara, California. Monthly Weather Review, 148(4), 1519–1539.

    Article  Google Scholar 

  • Cash, B. A., & Burls, N. J. (2019). Predictable and unpredictable aspects of US west coast rainfall and El Nino: Understanding the 2015/16 event. Journal of Climate, 32(10), 2843–2868.

    Article  Google Scholar 

  • Cayan, D. R., Tyree, M., Dettinger, M. D., Hidalgo Leon, H. G., Das, T., Maurer, E. P., Bromirski, P., Graham, N., & Flick, R. (2009). Climate change scenarios and sea level rise estimates for California 2008 climate change scenarios assessment (p. 62). Sacramento, CA: California Energy Commission.

    Google Scholar 

  • Church, R. L., & Cova, T. J. (2000). Mapping evacuation risk on transportation networks using a spatial optimization model. Transportation Research Part C: Emerging Technologies, 8(1–6), 321–336.

    Article  Google Scholar 

  • Church, R.L. and Sexton, R.M., 2002. Modeling small area evacuation: Can existing transportation infrastructure impede public safety? California Department of Transportation, Testbed Center for Interoperability (UCSB) task order 3021, Final Report.

    Google Scholar 

  • Chuvieco, E., Riano, D., Aguado, I., & Cocero, D. (2002). Estimation of fuel moisture content from multitemporal analysis of Landsat thematic mapper reflectance data: Applications in fire danger assessment. International Journal of Remote Sensing, 23(11), 2145–2162.

    Article  Google Scholar 

  • Chuvieco, E., & Salas, J. (1996). Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science, 10(3), 333–345.

    Google Scholar 

  • Coen, J. L., Cameron, M., Michalakes, J., Patton, E. G., Riggan, P. J., & Yedinak, K. M. (2013). WRF-fire: Coupled weather–wildland fire modeling with the weather research and forecasting model. Journal of Applied Meteorology and Climatology, 52(1), 16–38.

    Article  Google Scholar 

  • Conil, S., & Hall, A. (2006). Local regimes of atmospheric variability: A case study of Southern California. Journal of Climate, 19(17), 4308–4325.

    Article  Google Scholar 

  • County of Santa Barbara, 2019a. Yearly rainfall graphs (https://www.countyofsb.org/pwd/yearlyrain.sbc, accessed 10/26/19).

  • County of Santa Barbara, 2019b. Rainfall intensity (https://www.countyofsb.org/pwd/rainintensity.sbc, accessed 10/26/19).

  • Cova, T. J., & Church, R. L. (1997). Modelling community evacuation vulnerability using GIS. International Journal of Geographical Information Science, 11(8), 763–784.

    Article  Google Scholar 

  • Cova, T. J., & Johnson, J. P. (2003). A network flow model for lane-based evacuation routing. Transportation Research Part A: Policy and Practice, 37(7), 579–604.

    Google Scholar 

  • Cova, T. J., Dennison, P. E., Kim, T. H., & Moritz, M. A. (2005). Setting wildfire evacuation trigger points using fire spread modeling and GIS. Transactions in GIS, 9(4), 603–617.

    Article  Google Scholar 

  • Current, J., & O'Kelly, M. (1992). Locating emergency warning sirens. Decision Sciences, 23(1), 221–234.

    Article  Google Scholar 

  • Dennison, P. E., Brewer, S. C., Arnold, J. D., & Moritz, M. A. (2014). Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters, 41(8), 2928–2933.

    Article  Google Scholar 

  • Dennison, P. E., Roberts, D. A., Thorgusen, S. R., Regelbrugge, J. C., Weise, D., & Lee, C. (2003). Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote Sensing of Environment, 88(4), 442–452.

    Article  Google Scholar 

  • Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. (2011). Atmospheric rivers, floods and the water resources of California. Water, 3(2), 445–478.

    Article  Google Scholar 

  • Diffenbaugh, N. S., Swain, D. L., & Touma, D. (2015). Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences, 112(13), 3931–3936.

    Article  Google Scholar 

  • Duine, G. J., Jones, C., Carvalho, L., & Fovell, R. G. (2019). Simulating sundowner winds in coastal Santa Barbara: Model validation and sensitivity. Atmosphere, 10((3)), 155.

    Article  Google Scholar 

  • Durran, D.R., 1990. Mountain waves and downslope winds. In atmospheric processes over complex terrain, edited by WE. Blumen (pp. 59-81). American Meteorological Society, Boston, MA.

  • Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. (2018). Global analysis of climate change projection effects on atmospheric rivers. Geophysical Research Letters, 45(9), 4299–4308.

    Article  Google Scholar 

  • Finney, M. A., Cohen, J. D., McAllister, S. S., & Jolly, W. M. (2013). On the need for a theory of wildland fire spread. International Journal of Wildland Fire, 22(1), 25–36.

    Article  Google Scholar 

  • Flick, R. E. (1998). A comparison of California tides, storm surges, and mean sea level during the El Niño winters of 1982-83 and 1997-98. Shore & Beach, 66(3), 7–11.

    Google Scholar 

  • Florsheim, J. L., Keller, E. A., & Best, D. W. (1991). Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California. Geological Society of America Bulletin, 103(4), 504–511.

    Article  Google Scholar 

  • Galloway, G., Boland, J., Burby, R., Groves, C., Longvile, S., Link, L., Mount, J., Opperman, J., Seed, R., Sills, G., & Smyth, J. (2007). A California challenge-flooding in the Central Valley. Sacramento, CA: A report to the Department of Water Resources.

    Google Scholar 

  • Gollner, M., Trouve, A., Altintas, I., Block, J., Callafon, D., Clements, C., Cortes, A., Ellicott, E., Filippi, J.B., Finney, M. and Ide, K., 2015. Towards data-driven operational wildfire spread Modelling. Report of the NSF-Funded Wildfire Workshop.

    Google Scholar 

  • Hardy, C. C., & Burgan, R. E. (1999). Evaluation of NDVI for monitoring live moisture in three vegetation types of the western US. Photogrammetric Engineering and Remote Sensing, 65(5), 603–610.

    Google Scholar 

  • Harris, S. M., & Carvalho, L. M. (2018). Characteristics of southern California atmospheric rivers. Theoretical and Applied Climatology, 132(3–4), 965–981.

    Article  Google Scholar 

  • Harrison, D. E., & Larkin, N. K. (1998). Seasonal US temperature and precipitation anomalies associated with El Niño: Historical results and comparison with 1997-98. Geophysical Research Letters, 25(21), 3959–3962.

    Article  Google Scholar 

  • Hughes, M., Hall, A., & Kim, J. (2011). Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic Change, 109(1), 119–132.

    Article  Google Scholar 

  • Jones, C. (2000). Occurrence of extreme precipitation events in California and relationships with the madden–Julian oscillation. Journal of Climate, 13(20), 3576–3587.

    Article  Google Scholar 

  • Jones, C., Carvalho, L.M.V., Duine, G-J., and Zigner, K., 2020. A new climatology of sundowner winds in coastal Santa Barbara, California, based on 30-yr high resolution WRF downscaling.

    Google Scholar 

  • Jones, C., Fujioka, F., & Carvalho, L. M. (2010). Forecast skill of synoptic conditions associated with Santa Ana winds in Southern California. Monthly Weather Review, 138(12), 4528–4541.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., & Zhu, Y. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472.

    Article  Google Scholar 

  • Keane, R. E., Cary, G. J., Davies, I. D., Flannigan, M. D., Gardner, R. H., Lavorel, S., Lenihan, J. M., Li, C., & Rupp, T. S. (2004). A classification of landscape fire succession models: Spatial simulations of fire and vegetation dynamics. Ecological Modelling, 179(1), 3–27.

    Article  Google Scholar 

  • Keeley, J. E., Safford, H., Fotheringham, C. J., Franklin, J., & Moritz, M. (2009). The 2007 southern California wildfires: Lessons in complexity. Journal of Forestry, 107(6), 287–296.

    Google Scholar 

  • Kolden, C. A., & Henson, C. (2019). A socio-ecological approach to mitigating wildfire vulnerability in the Wildland urban Interface: A case study from the 2017 Thomas fire. Fire, 2((1)), 9.

    Article  Google Scholar 

  • Li, D., Cova, T. J., & Dennison, P. E. (2019). Setting wildfire evacuation triggers by coupling fire and traffic simulation models: A spatiotemporal GIS approach. Fire Technology, 55(2), 617–642.

  • Liu, S., Murray-Tuite, P. M., & Schweitzer, L. (2014). Uniting multi-adult households during emergency evacuation planning. Disasters, 38(3), 587–609.

    Article  Google Scholar 

  • Liu, Y., Lai, X., & Chang, G. L. (2006). Two-level integrated optimization system for planning of emergency evacuation. Journal of Transportation Engineering, 132(10), 800–807.

    Article  Google Scholar 

  • Loaiciga, H. A., Pedreros, D., & Roberts, D. (2001). Wildfire-streamflow interactions in a chaparral watershed. Advances in Environmental Research, 5(3), 295–305.

    Article  Google Scholar 

  • Lu, Q., George, B., & Shekhar, S. (2005, August). Capacity constrained routing algorithms for evacuation planning: A summary of results. In International symposium on spatial and temporal databases (pp. 291–307). Berlin: Springer.

    Chapter  Google Scholar 

  • Mann, M. E., & Gleick, P. H. (2015). Climate change and California drought in the 21st century. Proceedings of the National Academy of Sciences, 112(13), 3858–3859.

    Article  Google Scholar 

  • McDowell, N. G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155(3), 1051–1059.

    Article  Google Scholar 

  • Mensing, S. A., Michaelsen, J., & Byrne, R. (1999). A 560-year record of Santa Ana fires reconstructed from charcoal deposited in the Santa Barbara Basin, California. Quaternary Research, 51(3), 295–305.

    Article  Google Scholar 

  • Miller, N. L., & Schlegel, N. J. (2006). Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophysical Research Letters, 33(15).

  • Minor, S.A., Kellogg, K.S., Stanley, R.G., Gurrola, L.D., Keller, E.A., and Brandt, T.R., 2009. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California: U.S. Geological Survey Scientific Investigations Map 3001, scale 1:25,000, 1 sheet, pamphlet, 38 p.

  • Mladenoff, D. J., & He, H. S. (1999). Design, behavior and application of LANDIS, an object-oriented model of forest landscape disturbance and succession. In D. J. Mladenoff & W. L. Baker (Eds.), Spatial modeling of forest landscape change: Approaches and applications (pp. 125–162). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Moorcroft, P. R., Hurtt, G. C., & Pacala, S. W. (2001). A method for scaling vegetation dynamics: The ecosystem demography model (ED). Ecological Monographs, 71(4), 557–586.

    Article  Google Scholar 

  • Moritz, M. A. (2003). Spatiotemporal analysis of controls on shrubland fire regimes: Age dependency and fire hazard. Ecology, 84(2), 351–361.

    Article  Google Scholar 

  • Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hessburg, P. F., Leonard, J., McCaffrey, S., Odion, D. C., Schoennagel, T., & Syphard, A. D. (2014). Learning to coexist with wildfire. Nature, 515(7525), 58–66.

    Article  Google Scholar 

  • Moritz, M. A., Hessburg, P. F., & Povak, N. A. (2011). Native fire regimes and landscape resilience. In D. McKenzie, C. Miller, & D. Falk (Eds.), The landscape ecology of fire (pp. 51–86). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Murray, A. T. (2010). Quantitative geography. Journal of Regional Science, 50(1), 143–163.

    Article  Google Scholar 

  • Murray, A. T., Church, R. L., Xu, J., Carvalho, L., Jones, C., & Roberts, D. (2020). Fire and flood vulnerability, and implications for evacuation. In Geo spatial technology and Smart City development. Poonam Sharma: Springer.

    Google Scholar 

  • Nash, D., Waliser, D., Guan, B., Ye, H., & Ralph, F. M. (2018). The role of atmospheric rivers in extratropical and polar hydroclimate. Journal of Geophysical Research: Atmospheres, 123(13), 6804–6821.

    Google Scholar 

  • National Weather Service, 2019. Hazard Criteria and Definitions (https://www.wrh.noaa.gov/lox/fastpage/QuickReference_public.pdf, accessed 10/25/19).

  • Newburger, E., 2019. ‘There are lives at stake’: PG&E criticized over blackouts to prevent California wildfires. CNBC, October 23, 2019 (https://www.cnbc.com/2019/10/23/pge-rebuked-over-imposing-blackouts-in-california-to-reduce-fire-risk.html, accessed 7/9/20).

  • Oakley, N. S., Cannon, F., Munroe, R., Lancaster, J. T., Gomberg, D., & Ralph, F. M. (2018). Brief communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria, California, USA. Natural Hazards and Earth System Sciences, 18(11), 3037–3043.

    Article  Google Scholar 

  • Oakley, N. S., Lancaster, J. T., Kaplan, M. L., & Ralph, F. M. (2017). Synoptic conditions associated with cool season post-fire debris flows in the transverse ranges of southern California. Natural Hazards, 88(1), 327–354.

    Article  Google Scholar 

  • Paltridge, G. W., & Barber, J. (1988). Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data. Remote Sensing of Environment, 25(3), 381–394.

    Article  Google Scholar 

  • Peterson, S.H., Morais, M.E., Carlson, J.M., Dennison, P.E., Roberts, D.A., Moritz, M.A. and Weise, D.R., 2009. Using HFire for spatial modeling of fire in shrublands. Res. Pap. PSW-RP-259. Albany, CA: US Department of Agriculture, Forest Service, Pacific southwest Research Station. 44 p, 259.

  • Peterson, S. H., Roberts, D. A., & Dennison, P. E. (2008). Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sensing of Environment, 112(12), 4272–4284.

    Article  Google Scholar 

  • Pyne, S. J. (1996). Introduction to wildland fire (2nd ed.). John Wiley & Sons.

  • Ralph, F. M., Cordeira, J. M., Neiman, P. J., & Hughes, M. (2016). Landfalling atmospheric rivers, the sierra barrier jet, and extreme daily precipitation in northern California’s upper Sacramento River watershed. Journal of Hydrometeorology, 17(7), 1905–1914.

    Article  Google Scholar 

  • Ralph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz, J. J., Lamjiri, M. A., Barnes, E. A., Gershunov, A., Guan, B., & Nardi, K. M. (2019). ARTMIP-early start comparison of atmospheric river detection tools: How many atmospheric rivers hit northern California’s Russian River watershed? Climate Dynamics, 52(7–8), 4973–4994.

    Article  Google Scholar 

  • Raphael, M. N. (2003). The Santa Ana winds of California. Earth Interactions, 7(8), 1–13.

    Article  Google Scholar 

  • Richardson, L. A., Champ, P. A., & Loomis, J. B. (2012). The hidden cost of wildfires: Economic valuation of health effects of wildfire smoke exposure in Southern California. Journal of Forest Economics, 18(1), 14–35.

    Article  Google Scholar 

  • Richner, H., & Hachler, P. (2013). Understanding and forecasting Alpine foehn. In F. Chow, S. De Wekker, & B. Snyder (Eds.), Mountain weather research and forecasting (pp. 219–260). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Roberts, D. A., Dennison, P. E., Gardner, M. E., Hetzel, Y., Ustin, S. L., & Lee, C. T. (2003). Evaluation of the potential of Hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1297–1310.

    Article  Google Scholar 

  • Roberts, D. A., Dennison, P. E., Peterson, S., Sweeney, S., & Rechel, J. (2006). Evaluation of AVIRIS and MODIS measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. Journal of Geophysical Research, 111, G04S02.

    Google Scholar 

  • Ryan, G., 1996: Downslope winds of Santa Barbara, California. NOAA Tech. Memo. NWS WR-240, U.S. Department of Commerce, 44 pp.

  • Ryan, K. C., & Opperman, T. S. (2013). LANDFIRE–A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning. Forest Ecology and Management, 294, 208–216.

    Article  Google Scholar 

  • Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., & Liu, H. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058.

    Article  Google Scholar 

  • Schonher, T., & Nicholson, S. E. (1989). The relationship between California rainfall and ENSO events. Journal of Climate, 2(11), 1258–1269.

    Article  Google Scholar 

  • Scott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: A comprehensive set for use with Rothermel's surface fire spread model. In Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station (Vol. 72, p. 153).

    Google Scholar 

  • Serna, J., 2019. Southern California Edison power lines sparked deadly Thomas fire, investigators find. Los Angeles Times, May 13, 2019 (https://www.latimes.com/local/lanow/la-me-ln-thomas-fire-edison-cause-20190313-story.html, accessed 7/9/20).

  • Serrano, L., Ustin, S. L., Roberts, D. A., Gamon, J. A., & Penuelas, J. (2000). Deriving water content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment, 74(3), 570–581.

    Article  Google Scholar 

  • Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10), 703–708.

    Article  Google Scholar 

  • Smith, A., Martin, D., & Cockings, S. (2016). Spatio-temporal population modelling for enhanced assessment of urban exposure to flood risk. Applied Spatial Analysis and Policy, 9(2), 145–163.

    Article  Google Scholar 

  • State of California, 2013. California’s Flood Future (https://water.ca.gov/LegacyFiles/sfmp/resources/Attachment_C_History_Appendices_A-F.pdf, accessed 10/26/19).

  • Stepanov, A., & Smith, J. M. (2009). Multi-objective evacuation routing in transportation networks. European Journal of Operational Research, 198(2), 435–446.

    Article  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2014). Climate change 2013: The physical science basis. In Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change.

    Google Scholar 

  • Stow, D., Niphadkar, M., & Kaiser, J. (2005). MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. International Journal of Remote Sensing, 26(17), 3867–3873.

    Article  Google Scholar 

  • Sukup, S. (2013). Extreme northeasterly wind events in the hills above Montecito, California. In Western Region Technical Attachment NWS WR-1302. National: Weather Service Western Region, Salt Lake City, UT.

    Google Scholar 

  • Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8((5)), 427.

    Article  Google Scholar 

  • Syphard, A. D., Franklin, J., & Keeley, J. E. (2006). Simulating the effects of frequent fire on southern California coastal shrublands. Ecological Applications, 16(5), 1744–1756.

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015). Attribution of climate extreme events. Nature Climate Change, 5((8)), 725.

    Article  Google Scholar 

  • United States Census, 2019. QuickFacts (https://www.census.gov/quickfacts, accessed 10/14/19).

  • Viessman, W., & Lewis, G. L. (2003). Introduction to hydrology (5th edition). New York: Prentice Hall.

    Google Scholar 

  • Waliser, D. and Guan, B., 2017. Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10(3), p.179.

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science, 313(5789), 940–943.

    Article  Google Scholar 

  • Whiteman, C. D. (2000). Mountain meteorology: Fundamentals and applications. Oxford University Press.

  • Wolshon, P. B. (2009). Transportation's role in emergency evacuation and reentry. In Transportation Research Board (Vol. 392).

    Google Scholar 

  • Zigner, K., Carvalho, L., Peterson, S., Fujioka, F., Duine, G.-J., Jones, C., Roberts, D., & Moritz, M. (2020). Evaluating the ability of FARSITE to simulate wildfires influenced by extreme, downslope winds in Santa Barbara. Fire: California.

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1664173.

Funding

This study was funded by the National Science Foundation (grant number 1664173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan T. Murray.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, A.T., Carvalho, L., Church, R.L. et al. Coastal Vulnerability under Extreme Weather. Appl. Spatial Analysis 14, 497–523 (2021). https://doi.org/10.1007/s12061-020-09357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-020-09357-0

Keywords

Navigation