Skip to main content
Log in

Acteoside Presents Protective Effects on Cerebral Ischemia/reperfusion Injury Through Targeting CCL2, CXCL10, and ICAM1

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the roles of acteoside (ACT) in cells with oxygen–glucose deprivation and reoxygenation (OGD/R)-induced injury and the underlying mechanisms. The differentially expressed genes (DEGs) in rats with middle cerebral artery occlusion were identified using GSE61616 data set. Kyoto Encyclopedia of Genes and Genomes pathway enrichment with the DEGs and the prediction of ACT’s targets were conducted using The Comparative Toxicogenomics Database. The OGD/R model was established with bEnd.3 cells. Following that, bEnd.3 cells were treated by distinct concentrations of ACT and IL-10. The proliferation and apoptosis of cells were analyzed by cell counting kit-8 and flow cytometry assays, respectively. Western blot was used to check involved proteins. Herein, we identified CCL2, CXCL10, and ICAM1 as the targets of ACT, which were upregulated in tissues of MACO rats and cells with OGD/R-induced injury. ACT promoted the proliferation but reduce the apoptosis of cells with OGD/R-induced injury. Moreover, these effects of ACT were enhanced by IL-10. After being treated with ACT, IL-10, or ACT together with IL-10, the levels of CCL2, CXCL10, and ICAM1 were all decreased, whereas p-Stat3 was raised in cells with OGD/R-induced injury, while Stat3 expression presented no significant difference among groups. ACT protected cells against OGD/R-induced injury through regulating the IL-10/Stat3 signaling, indicating that ACT might be an effective therapy drug to lower cerebral ischemia/reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., et al. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet, 383, 245–254.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, W., Jiang, B., Sun, H., et al. (2017). Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480687 adults. Circulation, 135, 759–771.

    Article  PubMed  Google Scholar 

  3. Wang, S., Davis, S., Dong, Q., et al.(2019). Advanced clinical education for stroke physicians in China: the ACTION and SCA models. International Journal of Stroke, 14, 215–219.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, H., Wei, G., Wang, C., et al.(2019). A functional polymorphism in the promoter of miR-17-92 cluster is associated with decreased risk of ischemic stroke. BMC Medical Genomics, 12, 019-0589.

    Google Scholar 

  5. Bejot, Y., Daubail, B., & Giroud, M. (2016). Epidemiology of stroke and transient ischemic attacks: current knowledge and perspectives. Revue Neurologique, 172, 59–68.

    Article  CAS  PubMed  Google Scholar 

  6. Uzdensky, A. B. (2019). Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis, 24, 687–702.

    Article  CAS  PubMed  Google Scholar 

  7. Duan, Q., Sun, W., Yuan, H., & Mu, X. (2018). MicroRNA-135b-5p prevents oxygen-glucose deprivation and reoxygenation-induced neuronal injury through regulation of the GSK-3beta/Nrf2/ARE signaling pathway. Archives of Medical Science, 14, 735–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, J. Y., Li, Q., Ma, Z. Z., & Fan, J. Y. (2017). Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. Pharmacology & Therapeutics, 177, 146–173.

    Article  CAS  Google Scholar 

  9. Kim, K. J., Chun, J. L., Lee, K. B., et al.(2016). Effect of acteoside on the re-localization and abnormal morphology of mitochondria in porcine oocytes during in vitro maturation. Journal of Assisted Reproduction and Genetics, 33, 939–948.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, L., Tsao, R., Liu, Z., et al.(2005). Isolation and purification of acteoside and isoacteoside from Plantago psyllium L. by high-speed counter-current chromatography. Journal of Chromatography A, 21, 1–2.

    Google Scholar 

  11. Pettit, G. R., Numata, A., Takemura, T., et al.(1990). Antineoplastic agents, 107. Isolation of acteoside and isoacteoside from Castilleja linariaefolia. Journal of Natural Products, 53, 456–458.

    Article  CAS  PubMed  Google Scholar 

  12. Chiou, W. F., Lin, L. C., & Chen, C. F. (2004). Acteoside protects endothelial cells against free radical-induced oxidative stress. Journal of Pharmacy and Pharmacology, 56, 743–748.

    Article  CAS  PubMed  Google Scholar 

  13. Yamada, P., Iijima, R., Han, J., et al.(2010). Inhibitory effect of acteoside isolated from Cistanche tubulosa on chemical mediator release and inflammatory cytokine production by RBL-2H3 and KU812 cells. Planta Medica, 76, 1512–1518.

    Article  CAS  PubMed  Google Scholar 

  14. Jing, W., Chunhua, M., & Shumin, W. (2015). Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-kappaB pathway in vivo and in vitro. Toxicology and Applied Pharmacology, 285, 128–135.

    Article  CAS  PubMed  Google Scholar 

  15. He, J., Hu, X. P., Zeng, Y., et al. (2011). Advanced research on acteoside for chemistry and bioactivities. Journal of Asian Natural Products Research, 13, 449–464.

    Article  CAS  PubMed  Google Scholar 

  16. Xia, D., Zhang, Z., & Zhao, Y. (2018). Acteoside attenuates oxidative stress and neuronal apoptosis in rats with focal cerebral ischemia-reperfusion injury. Biological and Pharmaceutical Bulletin, 41, 1645–1651.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H., Xu, Y., Yan, J., et al. (2009). Acteoside protects human neuroblastoma SH-SY5Y cells against beta-amyloid-induced cell injury. Brain Research, 4, 139–147.

    Article  Google Scholar 

  18. Kurisu, M., Miyamae, Y., Murakami, K., et al. (2013). Inhibition of amyloid beta aggregation by acteoside, a phenylethanoid glycoside. Bioscience, Biotechnology, and Biochemistry, 77, 1329–1332.

    Article  CAS  PubMed  Google Scholar 

  19. Shiao, Y. J., Sum, M. H., Lin, H. C., & Wu, C. R. (2017). Acteoside and isoacteoside protect amyloid beta peptide induced cytotoxicity, cognitive deficit and neurochemical disturbances in vitro and in vivo. International Journal of Molecular Sciences, 18, 895.

    Article  PubMed Central  Google Scholar 

  20. Xiong, L., Mao, S., Lu, B., et al.(2016). Osmanthus fragrans flower extract and acteoside protect against d-galactose-induced aging in an ICR mouse model. Journal of Medicinal Food, 19, 54–61.

    Article  CAS  PubMed  Google Scholar 

  21. Holliday, E. G., Traylor, M., Malik, R., et al. (2015). Genetic overlap between diagnostic subtypes of ischemic stroke. Stroke, 46, 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tu, R., Armstrong, J., Lee, K. S. S., et al.(2018). Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Scientific Reports, 8, 018-23504.

    Article  Google Scholar 

  23. Guell, K., & Bix, G. J. (2014). Brain endothelial cell specific integrins and ischemic stroke. Expert Review of Neurotherapeutics, 14, 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  24. Culman, J., Nguyen-Ngoc, M., Glatz, T., et al.(2012). Treatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: a preclinical stroke trial. Experimental Neurology, 238, 243–253.

    Article  CAS  PubMed  Google Scholar 

  25. Yan, R. Y., Wang, S. J., Yao, G. T., Liu, Z. G., & Xiao, N. (2017). The protective effect and its mechanism of 3-n-butylphthalide pretreatment on cerebral ischemia reperfusion injury in rats. European Review for Medical and Pharmacological Sciences, 21, 5275–5282.

    PubMed  Google Scholar 

  26. Cao, L., Miao, M., Qiao, J., Bai, M., & Li, R. (2018). The protective role of verbenalin in rat model of focal cerebral ischemia reperfusion. Saudi Journal of Biological Sciences, 25, 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao, G., Lyu, M., & Wang, Y. et al. (2019). Ginkgo flavonol glycosides or ginkgolides tend to differentially protect myocardial or cerebral ischemia-reperfusion injury via regulation of TWEAK-Fn14 signaling in heart and brain. Frontiers in Pharmacology, 10, 735.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miao, M., Cao, L., Li, R., Fang, X., & Miao, Y. (2017). Protective effect of chlorogenic acid on the focal cerebral ischemia reperfusion rat models. Saudi Pharmaceutical Journal, 25, 556–563.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, W., Song, J. K., Yan, R., et al.(2018). Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling. Acta Pharmacologica Sinica, 39, 1259–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhuang, P., Wan, Y., Geng, S., et al.(2017). Salvianolic acids for injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia. Journal of Ethnopharmacology, 198, 194–204.

    Article  CAS  PubMed  Google Scholar 

  31. De Paepe, B., Creus, K. K., & De Bleecker, J. L. (2008). Chemokines in idiopathic inflammatory myopathies. Frontiers in Bioscience, 13, 2548–2577.

    Article  PubMed  Google Scholar 

  32. Guo, Y. Q., Zheng, L. N., Wei, J. F., et al.(2014). Expression of CCL2 and CCR2 in the hippocampus and the interventional roles of propofol in rat cerebral ischemia/reperfusion. Experimental and Therapeutic Medicine, 8, 657–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sorensen, T. L., Trebst, C., Kivisakk, P. et al.(2002). Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. Journal of Neuroimmunology, 127, 59–68.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, J., & Campbell, I. L. (2005). Innate STAT1-dependent genomic response of neurons to the antiviral cytokine alpha interferon. Journal of Virology, 79, 8295–8302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Balashov, K. E., Rottman, J. B., Weiner, H. L., & Hancock, W. W. (1999). CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proceedings of the National Academy of Sciences of the USA, 96, 6873–6878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hughes, P. M., Allegrini, P. R., Rudin, M., et al.(2002). Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. Journal of Cerebral Blood Flow & Metabolism, 22, 308–317.

    Article  CAS  Google Scholar 

  37. Wang, X., Li, X., Schmidt, D. B., et al.(2000). Identification and molecular characterization of rat CXCR3: receptor expression and interferon-inducible protein-10 binding are increased in focal stroke. Molecular Pharmacology, 57, 1190–1198.

    CAS  PubMed  Google Scholar 

  38. Tarozzo, G., Campanella, M., Ghiani, M., Bulfone, A., & Beltramo, M. (2002). Expression of fractalkine and its receptor, CX3CR1, in response to ischaemia-reperfusion brain injury in the rat. European Journal of Neuroscience, 15, 1663–1668.

    Article  Google Scholar 

  39. Losy, J., & Zaremba, J. (2001). Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke, 32, 2695–2696.

    Article  CAS  PubMed  Google Scholar 

  40. Hu, X. M., Zhang, Y., & Zeng, F. D. (2004). Effects of sodium beta-aescin on expression of adhesion molecules and migration of neutrophils after middle cerebral artery occlusion in rats. Acta Pharmacologica Sinica, 25, 869–875.

    CAS  PubMed  Google Scholar 

  41. Cevey, A. C., Penas, F. N., Alba Soto, C. D., Mirkin, G. A., & Goren, N. B. (2019). IL-10/STAT3/SOCS3 axis is involved in the anti-inflammatory effect of benznidazole. Frontiers in Immunology, 10, 1267.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hutchins, A. P., Diez, D., & Miranda-Saavedra, D. (2013). The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Briefings in Functional Genomics, 12, 489–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, D., Wan, L., Chen, M., et al.(2014). Essential role of IL-10/STAT3 in chronic stress-induced immune suppression. Brain, Behavior, and Immunity, 36, 118–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El Kasmi, K. C., Holst, J., Coffre, M., et al.(2006). General nature of the STAT3-activated anti-inflammatory response. Journal of Immunology, 177, 7880–7888.

    Article  CAS  Google Scholar 

  45. Williams, L., Bradley, L., Smith, A., & Foxwell, B. (2004). Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. Journal of Immunology, 172, 567–576.

    Article  CAS  Google Scholar 

  46. Lang, R., Patel, D., Morris, J. J., Rutschman, R. L., & Murray, P. J. (2002). Shaping gene expression in activated and resting primary macrophages by IL-10. Journal of Immunology, 169, 2253–2263.

    Article  CAS  Google Scholar 

  47. Schmetterer, K. G., & Pickl, W. F. (2017). The IL-10/STAT3 axis: contributions to immune tolerance by thymus and peripherally derived regulatory T-cells. European Journal of Immunology, 47, 1256–1265.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, conduct the experiment, and analysis were performed by W.W. and G.W. W.W., G.W., and D.C. conceived and designed the experiments. D.C. reviewed drafts of the paper. The first draft of the paper was written by W.W. and all authors commented on previous versions of the paper. All authors read and approved the final paper.

Corresponding author

Correspondence to Deyan Cao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wu, G. & Cao, D. Acteoside Presents Protective Effects on Cerebral Ischemia/reperfusion Injury Through Targeting CCL2, CXCL10, and ICAM1. Cell Biochem Biophys 79, 301–310 (2021). https://doi.org/10.1007/s12013-020-00965-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00965-8

Keywords

Navigation