Skip to main content
Log in

Dispersibility of Nanocrystalline Cellulose in Organic Solvents

  • PLANT BIOPOLYMERS
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Aqueous suspensions of nanocrystalline cellulose (NCC) were obtained by sulfuric acid hydrolysis using the standard procedure. Suspensions, films, and aerogel of NCC were characterized by various methods: the degree of polymerization was determined, elemental analysis was carried out, the degree of crystallinity and crystallite size were calculated on the basis of X-ray data, and the morphology of NCC aerogels was studied using scanning electron microscopy. The particle size of the NCC was determined using a transmission electron microscope, a scanning atomic force microscope, and the method of dynamic light scattering. NCC hydrosols with different pH were used to prepare lyophilized NCC samples. From NCC hydrosols with pH 2.2, by gradual replacement of water with an organic solvent, NCC organogels with acetone, acetonitrile, and ethanol were obtained. The dispersion of lyophilized NCC and NCC organogels (acetone, acetonitrile, and ethanol) in water and in 11 organic solvents was investigated. The effect of the pH of the initial aqueous suspension of the NCC and the solvent forming the NCC organogel on the repeated dispersibility of the NCC is shown. The optimum pH value of the initial aqueous suspension of NCC was determined, which determines the maximum dispersibility of the lyophilized samples in each specific solvent. Acetone, acetonitrile, and ethanol organogels are dispersed in most of the solvents studied with the formation of particles less than 100 nm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Peng, B.L., Dhar, N., Liu, H.L., and Tam, K.C., Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective, Can. J. Chem. Eng., 2011, vol. 89, pp. 1191–1198. https://doi.org/10.1002/cjce.20554

    Article  CAS  Google Scholar 

  2. Eichhorn, S.J., Cellulose nanowhiskers: Promising materials for advanced applications, Soft Matter, 2011, no. 7, pp. 303–315. https://doi.org/10.1039/c0sm00142b

  3. Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A.P., Oksman, K., et al., Utilization of various lignocellulosic biomass for the production of nanocellulosea comparative study, Cellulose, 2015, vol. 22, pp. 1075–1085. https://doi.org/10.1007/s10570-015-0554-x

    Article  CAS  Google Scholar 

  4. Habibi, Y., Lucia, L.A., and Rojas, O.J., Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev., 2010, vol. 110, pp. 3479–3500. https://doi.org/10.1021/cr900339w

    Article  CAS  PubMed  Google Scholar 

  5. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., and Peijs, T., Review: Current international research into cellulose nanofibres and nanocomposites, J. Mater Sci., 2010, vol. 45, no. 1, pp. 1–33. https://doi.org/10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  6. Cao, X., Dong, H., and Li, C.M., New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane, Biomacromolecules, 2007, no. 8, pp. 899–904. https://doi.org/10.1021/bm0610368

  7. Bondeson, D., Mathew, A., and Oksman, K., Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose, 2006, vol. 13, no. 2, pp. 171–180. https://doi.org/10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  8. Araki, J., Wada, M., Kuga, S., and Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids Surf. A., 1998, vol. 142, pp. 75–82. https://doi.org/10.1016/S0927-7757(98)00404-X

    Article  CAS  Google Scholar 

  9. Liu, D., Zhong, T., Chang, P.R., Li, K., and Wu, Q., Starch composites reinforced by bamboo cellulosic crystals, Bioresour Technol., 2010, vol. 101, no. 7, pp. 2529–2536. https://doi.org/10.1016/j.biortech.2009.11.058

    Article  CAS  PubMed  Google Scholar 

  10. Espinosa, S.C., Kuhnt, T., Foster, E.J., and Weder, C., Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis, Biomacromolecules, 2013, vol. 14, no. 4, pp. 1223–1230. https://doi.org/10.1021/bm400219u

    Article  CAS  Google Scholar 

  11. Um, B.H., Karim, M.N., and Henk, L.L., Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover, Appl. Biochem. Biotechnol., 2003, vols. 105–108, nos. 1–3, pp. 115–125. https://doi.org/10.1385/ABAB:105:1-3:115

    Article  PubMed  Google Scholar 

  12. Yan, C.-F., Yu, H.-Y., and Yao, J.-M., One-step extraction and functionalization of cellulose nanospheres from lyocell fibers with cellulose II crystal structure, Cellulose, 2015, vol. 22, no. 6, pp. 3773–3788. https://doi.org/10.1007/s10570-015-0761-5

    Article  CAS  Google Scholar 

  13. Chen, L., Zhu, J.Y., Baez, C., Kitin, P., and Elder, T., Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids, Green Chem., 2016, vol. 18, pp. 3835–3843. https://doi.org/10.1039/C6GC00687F

    Article  CAS  Google Scholar 

  14. Espino-Perez, E., Domenek, S., Belgacem, N., Sillard, C., and Bras, J., Green process for chemical functionalization of nanocellulose with carboxylic acids, Biomacromolecules, 2014, vol. 15, no. 12, pp. 4551–4560. https://doi.org/10.1021/bm5013458

    Article  CAS  PubMed  Google Scholar 

  15. Spinella, S., Maiorana, A., Qian, Q., Dawson, N.J., Hepworth, V., McCallum, S.A., Ganesh, M., Singer, K.D., and Gross, R.A., Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties, ACS Sustain Chem. Eng., 2016, vol. 4, no. 3, pp. 1538–1550. https://doi.org/10.1021/acssuschemeng.5b01489

    Article  CAS  Google Scholar 

  16. Braun, B. and Dorgan, J.R., Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers, Biomacromolecules, 2008, vol. 10, no. 2, pp. 334–341. https://doi.org/10.1021/bm8011117

    Article  CAS  Google Scholar 

  17. Cheng, M., Qin, Z., Chen, Y., Liu, J., and Ren, Z., Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids, Cellulose, 2017, vol. 24, pp. 3243–3254. https://doi.org/10.1007/s10570-017-1339-1

    Article  CAS  Google Scholar 

  18. Siqueira, G., Tapin-Lingua, S., Bras, J., da Silva Perez, D., and Dufresne, A., Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose, 2010, vol. 17, no. 6, pp. 1147–1158. https://doi.org/10.1007/s10570-010-9449-z

    Article  CAS  Google Scholar 

  19. Filson, P.B., Dawson-Andoh, B., and Schwegler-Berry, D., Green Chem., 2009, vol. 11, pp. 1808–1814. https://doi.org/10.1039/b915746h

    Article  CAS  Google Scholar 

  20. Torlopov, M.A., Udoratina, E.V., Maratov, I.S., and Sitnikov, P.A., Cellulose nanocrystals prepared in H3PW12O40–acetic acid system, Cellulose, 2017, vol. 24, no. 5, pp. 2153–2162. https://doi.org/10.1007/s10570-017-1256-3

    Article  CAS  Google Scholar 

  21. Torlopov, M.A., Mikhaylov, V.I., Udoratina, E.V., Aleshina, L.A., Prusskii, A.I., Tsvetkov, N.V., and Krivoshapkin, P.V., Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1, Cellulose, 2017, vol. 25, no. 2, pp. 1031–1046. https://doi.org/10.1007/s10570-017-1624-z

    Article  CAS  Google Scholar 

  22. Yahya, M., Lee, H.V., and Hamid, S.B.A., Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway, BioResources, 2015, vol. 10, no. 4, pp. 7627–7639. https://doi.org/10.15376/biores.10.4.7627-7639

    Article  CAS  Google Scholar 

  23. Chen, Y.W., Lee, H.V., and Hamid, S.B.A., Preparation and characterization of cellulose crystallites via Fe(III)-, Co(II)- and Ni(II)-assisted dilute sulfuric acid catalyzed hydrolysis process, J. Nano Res., 2016, vol. 41, pp. 96–109. https://doi.org/10.4028/www.scientific.net/JNanoR.41.96

  24. Man, Z., Muhammad, N., Sarwono, A., Bustam, M.A., Kumar, M.V., and Rafiq, S., Preparation of cellulose nanocrystals using an ionic liquid, J. Polym. Environ., 2011, vol. 19, no. 3, pp. 726–731. https://doi.org/10.1007/s10924-011-0323-3

    Article  CAS  Google Scholar 

  25. Miao, J., Yu, Y., Jiang, Z., and Zhang, L., One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid, Cellulose, 2016, vol. 23, no. 2, pp. 1209–1219. https://doi.org/10.1007/s10570-016-0864-7

    Article  CAS  Google Scholar 

  26. Zhang, J., [Wu, J., Yu, J., Zhang, X., He, J., and Zhang, J., Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends, Mater. Chem. Front., 2017, vol. 1, no. 7, pp. 1273–1290. https://doi.org/10.1039/C6QM00348F

    Article  CAS  Google Scholar 

  27. Hirota, M., Furihata, K., Saito, T., Kawada, T., and Isogai, A., Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling, Angew. Chem. Int. Ed., 2010, vol. 49, no. 42, pp. 7670–7672. https://doi.org/10.1002/anie.201003848

    Article  CAS  Google Scholar 

  28. Hirota, M., Tamura, N., Saito, T., and Isogai, A., Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8, Cellulose, 2010, vol. 17, no. 2, pp. 279–288. https://doi.org/10.1007/s10570-009-9381-2

    Article  CAS  Google Scholar 

  29. Montanari, S., Roumani, M., Heux, L., and Vignon, M.R., Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation, Macromolecules, 2005, vol. 38, no. 5, pp. 1665–1671. https://doi.org/10.1021/ma048396c

    Article  CAS  Google Scholar 

  30. Peyre, J., Pääkkӧnen, T., Reza, M., and Kontturi, E., Simultaneous preparation of cellulose nanocrystals and micron-sized porous colloidal particles of cellulose by TEMPO-mediated oxidation, Green Chem., 2015, vol. 17, pp. 808–811. https://doi.org/10.1039/C4GC02001D

    Article  CAS  Google Scholar 

  31. Surov, O.V., Voronova, M.I., Rubleva, N.V., Kuzmicheva, L.A., Nikitin, D., Choukourov, A., Titov, V.A., and Zakharov, A.G., A novel effective approach of nanocrystalline cellulose production: Oxidation–hydrolysis strategy, Cellulose, 2018, vol. 25, no. 9, pp. 5035–5048. https://doi.org/10.1007/s10570-018-1910-4

    Article  CAS  Google Scholar 

  32. Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R.H., and Gray, D.G., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol., 1992, vol. 14, no. 3, pp. 170–172. https://doi.org/10.1016/S0141-8130(05)80008-X

    Article  CAS  PubMed  Google Scholar 

  33. Viet, D., Beck-Candanedo, S., and Gray, D.G., Dispersion of cellulose nanocrystals in polar organic solvents, Cellulose, 2007, no. 14, pp. 109–113. https://doi.org/10.1007/s10570-006-9093-9

  34. Beck, S., Bouchard, J., and Berry, R., Dispersibility in water of dried nanocrystalline cellulose, Biomacromolecules, 2012, no. 13, pp. 1486–1494. https://doi.org/10.1021/bm300191k

  35. Okura, H., Wada, M., and Serizawa, T., Dispersibility of HCl-treated cellulose nanocrystals with water-dispersible properties in organic solvents, Chem. Lett., 2014, vol. 43, pp. 601–603. https://doi.org/10.1246/cl.131181

    Article  CAS  Google Scholar 

  36. Siqueira, G., Fraschini, C., Bras, J., Dufresne, A., Prud’homme, R., and Laborie, M.-P., Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(-caprolactone), Eur. Polym. J., 2011, vol. 47, pp. 2216–2220. https://doi.org/10.1016/j.eurpolymj.2011.09.014

    Article  CAS  Google Scholar 

  37. Bruckner, J.R., Kuhnhold, A., Honorato-Rios, C., Schilling, T., and Lagerwall, J.P.F., Self-assembly in cellulose nanocrystal suspensions using high-permittivity solvents, Langmuir, 2016, vol. 32, pp. 9854–9862. https://doi.org/10.1021/acs.langmuir.6b02647

    Article  CAS  PubMed  Google Scholar 

  38. Berg, O., Capadona, J.R., and Weder, C., Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents, Biomacromolecules, 2007, no. 8, pp. 1353–1357. https://doi.org/10.1021/bm061104q

  39. Cheung, C.C.Y., Giese, M., Kelly, J.A, Hamad, W.Y., and MacLachlan, M.J., Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvents, ACS Macro Lett., 2013, no. 2, pp. 1016–1020. https://doi.org/10.1021/mz400464d

  40. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A.B., and Stahl, K., On the determination of crystallinity and cellulose content in plant fibres, Cellulose, 2005, vol. 12, no. 6, pp. 563–576. https://doi.org/10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  41. Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., and Rochas, C., The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose, Biomacromolecules, 2008, vol. 9, no. 1, pp. 57–65. https://doi.org/10.1021/bm700769p

    Article  CAS  PubMed  Google Scholar 

  42. French, A.D., Idealized powder diffraction patterns for cellulose polymorphs, Cellulose, 2014, vol. 21, no. 2, pp. 885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  43. Beck, S., Bouchard, J., and Berry, R., Dispersibility in water of dried nanocrystalline cellulose, Biomacromolecules, 2012, vol. 13, pp. 1486−1494. https://doi.org/10.1021/bm300191k

    Article  CAS  PubMed  Google Scholar 

  44. Boluk, Y. and Danumah, C., Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy, J. Nanopart Res., 2014, vol. 16, pp. 2174–2179. https://doi.org/10.1007/s11051-013-2174-4

    Article  CAS  Google Scholar 

  45. Brinkmann, A., Chen, M., Couillard, M., Jakubek, Z.J., Leng, T., and Johnston, L.J., Correlating cellulose nanocrystal particle size and surface area, Langmuir, 2016, vol. 32, no. 24, pp. 6105−6114. https://doi.org/10.1021/acs.langmuir.6b01376

    Article  CAS  PubMed  Google Scholar 

  46. Beuguel, Q., Tavares, J.R., Carreau, P.J., and Heuzey, M.-C., Ultrasonication of spray- and freeze-dried cellulose nanocrystals in water, J. Colloid Interface Sci., 2018, vol. 516, pp. 23–33. https://doi.org/10.1016/j.jcis.2018.01.035

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data were obtained using the Verkhnevolzhskii Regional Center for Physicochemical Studies (center for collective use).

Funding

The work was supported by the Russian Science Foundation (project no. 17-13-01240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Voronova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The work does not involve experiments on animals or humans.

Conflict of Interests

Authors declare they have no conflicts of interests.

SUPPLEMENTARY MATERIALS

Supplementary materials can be found at https://doi.org/10.14258/jcprm.2019014240s.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, M.I., Surov, O.V., Rubleva, N.V. et al. Dispersibility of Nanocrystalline Cellulose in Organic Solvents. Russ J Bioorg Chem 46, 1295–1303 (2020). https://doi.org/10.1134/S106816202007016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202007016X

Keywords:

Navigation