Skip to main content

Advertisement

Log in

Microfiber Content in Freshwater Mussels from Rural Tributaries of the Saint John River, Canada

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microfibers are now ubiquitous in the environment largely due to the widespread use of natural and synthetic textiles. Many enter aquatic systems through wastewater treatment plant (WWTP) effluent, surface water runoff, and atmospheric deposition, where they persist and may be ingested by filter-feeding organisms. In addition to causing physical damage (e.g., digestive and respiratory obstructions), microfibers are often carriers of chemical pollutants that may also harm biota. This exploratory study aimed to determine whether freshwater mussel (Margaritifera margaritifera L.) microfiber content varied between two rural tributaries of the Saint John River, whether microfiber content was related to WWTP discharge points or potential diffuse microfiber sources, and whether mussel size was associated with microfiber content. Mussels were collected both upstream and downstream of five WWTP discharge points and at 11 other points along two rivers within rural watersheds of maritime Canada. Microfiber content differed significantly between the two rivers; however, no trends were observed in microfiber content in relation to WWTP discharge points on either river. Smaller mussels contained significantly more microfibers than larger mussels, despite differences in mussel size ranges between tributaries. These results reveal a potential pathway for microfibers to enter aquatic food webs and highlight important implications for the use of freshwater mussels as bioindicators of microfiber contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Au, S. Y., Bruce, T. F., Bridges, W. C., & Klaine, S. J. (2015). Responses of Hyalella azteca to acute and chronic microplastic exposures. Environmental Toxicology and Chemistry, 34, 2564–2572. https://doi.org/10.1002/etc.3093@10.1002/(ISSN)1552-8618.MICROPLASTICS.

  • Bateman J (2017). 2017 restoration report. Kennebecasis Watershed Restoration Committee. https://www.kennebecasisriver.org/copy-of-reports-publications. Accessed 27 May 2020.

  • Berglund, E., Fogelberg, V., Nilsson, P. A., & Hollander, J. (2019). Microplastics in a freshwater mussel (Anodonta anatina) in northern Europe. Science of the Total Environment, 697, 134192. https://doi.org/10.1016/j.scitotenv.2019.134192.

  • Berndtsson, J. C., & Bengtsson, L. (2006). Influence of different activities on water quality in a small basin. International Journal of River Basin Management, 4(4), 291–300. https://doi.org/10.1080/15715124.2006.9635298.

    Article  Google Scholar 

  • Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026–5031.

  • Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science & Technology, 45(21), 9175–9179.

  • Core Team, R. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S. F., & Narayanaswamy, B. E. (2017). Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Analytical Methods, 9(9), 1437–1445. https://doi.org/10.1039/C6AY02343F.

    Article  CAS  Google Scholar 

  • Dehaut, A., Cassone, A.-L., Frère, L., Hermabessiere, L., Himber, C., Rinnert, E., et al. (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environmental Pollution, 215, 223–233. https://doi.org/10.1016/j.envpol.2016.05.018.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin, 104(1), 290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006.

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Rocher, V., & Tassin, B. (2018). Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: Sampling methodological aspects and flux estimations. Science of the Total Environment, 618, 157–164. https://doi.org/10.1016/j.scitotenv.2017.11.009.

    Article  CAS  Google Scholar 

  • Foekema, E. M., De Gruijter, C., Mergia, M. T., van Franeker, J. A., Murk, A. J., & Koelmans, A. A. (2013). Plastic in North Sea fish. Environmental Science & Technology, 47(15), 8818–8824. https://doi.org/10.1021/es400931b.

    Article  CAS  Google Scholar 

  • Fox, D. L., Sverdrup, H. U., & Cunningham, J. P. (1937). The rate of water propulsion by the California mussel. The Biological Bulletin, 72(3), 417–438. https://doi.org/10.2307/1537700.

    Article  Google Scholar 

  • Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M.-T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Science: Processes & Impacts, 15(10), 1949–1956. https://doi.org/10.1039/C3EM00214D.

    Article  CAS  Google Scholar 

  • Germanov, E. S., Marshall, A. D., Bejder, L., Fossi, M. C., & Loneragan, N. R. (2018). Microplastics: No small problem for filter-feeding megafauna. Trends in Ecology & Evolution, 33(4), 227–232. https://doi.org/10.1016/j.tree.2018.01.005.

    Article  Google Scholar 

  • Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553–561. https://doi.org/10.1016/j.marpolbul.2018.06.006.

    Article  CAS  Google Scholar 

  • Goodsell, P. J., Underwood, A. J., & Chapman, M. G. (2009). Evidence necessary for taxa to be reliable indicators of environmental conditions or impacts. Marine Pollution Bulletin, 58(3), 323–331. https://doi.org/10.1016/j.marpolbul.2008.10.011.

    Article  CAS  Google Scholar 

  • Grancaric, A. M., Tarbuk, A., & Pusic, T. (2005). Electrokinetic properties of textile fabrics. Coloration Technology, 121(4), 221–227. https://doi.org/10.1111/j.1478-4408.2005.tb00277.x.

  • Henry, B., Laitala, K., & Klepp, I. G. (2019). Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Science of the Total Environment, 652, 483–494. https://doi.org/10.1016/j.scitotenv.2018.10.166.

    Article  CAS  Google Scholar 

  • International Cotton Advisory Committee. (2017). World textile demand report: World consumption of major textile fibers. Washington: International Cotton Advisory Committee Accessed 20 March 2020.

    Google Scholar 

  • Jones, H. D., Richards, O. G., & Southern, T. A. (1992). Gill dimensions, water pumping rate and body size in the mussel Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 155(2), 213–237. https://doi.org/10.1016/0022-0981(92)90064-H.

  • Jørgensen, C. C. B. (1943). On the water transport through the gills of bivalves. Acta Physiologica Scandinavica, 5(4), 297–304. https://doi.org/10.1111/j.1748-1716.1943.tb02058.x.

    Article  Google Scholar 

  • Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K., & Shi, H. (2018). Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Science of the Total Environment, 610–611, 635–640. https://doi.org/10.1016/j.scitotenv.2017.08.053.

    Article  CAS  Google Scholar 

  • Ladewig, S. M., Bao, S., & Chow, A. T. (2015). Natural fibers: A missing link to chemical pollution dispersion in aquatic environments. Environmental Science & Technology, 49(21), 12609–12610. https://doi.org/10.1021/acs.est.5b04754.

    Article  CAS  Google Scholar 

  • Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A., & Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100(1), 82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460–467. https://doi.org/10.1016/j.envpol.2018.02.050.

    Article  CAS  Google Scholar 

  • Li, L., Su, L., Cai, H., Rochman, C. M., Li, Q., Kolandhasamy, P., et al. (2019). The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. Chemosphere, 221, 107–114. https://doi.org/10.1016/j.chemosphere.2019.01.024.

  • Loayza-Muro, R., & Elías-Letts, R. (2007). Responses of the mussel Anodontites trapesialis (Unionidae) to environmental stressors: Effect of pH, temperature and metals on filtration rate. Environmental Pollution, 149(2), 209–215. https://doi.org/10.1016/j.envpol.2007.01.003.

  • Martel, A. L., McAlpine, D. F., Madill, J. B., Sabine, D. L., Paquet, A., Pulsifer, M. D., & Elderkin, M. F. (2010). Freshwater mussels (Bivalvia: Margaritiferidae, Unionidae) of the Atlantic Maritime Ecozone. In D. F. McAlpine & I. M. Smith (Eds.), Assessment of species diversity in the Atlantic Maritime Ecozone (pp. 551–598). Ottawa: NRC Research Press.

    Google Scholar 

  • Mendoza, L. M. R., & Jones, P. R. (2015). Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environmental Chemistry, 12(5), 611–617. https://doi.org/10.1071/EN14236.

    Article  CAS  Google Scholar 

  • Millar, W., Noseworthy, J., & Nussey, P. (2019). A watershed health assessment for the northern Appalachian–Acadian region of Canada. Nature Conservancy of Canada, Atlantic Regional Office, Fredericton, Canada. https://2c1forest.databasin.org/documents/documents/1cd21d66d71f410ca863a04a67826f2e/. Accessed 28 May 2020.

  • Miller, R. Z., Watts, A. J. R., Winslow, B. O., Galloway, T. S., & Barrows, A. P. W. (2017). Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA. Marine Pollution Bulletin, 124(1), 245–251. https://doi.org/10.1016/j.marpolbul.2017.07.028.

    Article  CAS  Google Scholar 

  • Newell, C. R., Wildish, D. J., & MacDonald, B. A. (2001). The effects of velocity and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis. Journal of Experimental Marine Biology and Ecology, 262(1), 91–111. https://doi.org/10.1016/S0022-0981(01)00285-4.

  • Newsome, A. G., Culver, C. A., & van Breemen, R. B. (2014). Nature’s palette: The search for natural blue colorants. Journal of Agricultural and Food Chemistry, 62(28), 6498–6511. https://doi.org/10.1021/jf501419q.

    Article  CAS  Google Scholar 

  • Norén, F. (2008). Small plastic particles in coastal Swedish waters. N-research report, commissioned by KIMO Sweden.

  • Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150–159. https://doi.org/10.1016/j.trac.2018.10.029.

    Article  CAS  Google Scholar 

  • Provencher, J. F., Ammendolia, J., Rochman, C. M., & Mallory, M. L. (2019). Assessing plastic debris in aquatic food webs: What we know and don’t know about uptake and trophic transfer. Environmental Reviews, 27(3), 304–317. https://doi.org/10.1139/er-2018-0079.

    Article  Google Scholar 

  • Remy, F., Collard, F., Gilbert, B., Compère, P., Eppe, G., & Lepoint, G. (2015). When microplastic is not plastic: The ingestion of artificial cellulose fibers by macrofauna living in seagrass macrophytodetritus. Environmental Science & Technology, 49(18), 11158–11166. https://doi.org/10.1021/acs.est.5b02005.

  • Rice, T. R., & Smith, R. J. (1958). Filtering rates of the hard clam (Venus mercenaria), determined with radioactive phytoplankton. In Fishery Bulletin of the Fish and Wildlife Service (Vol. 58, pp. 73–82). United States Department of the Interior Fish and Wildlife Service, United States Government Printing Office, Washington.

  • Riva, C., Binelli, A., Parolini, M., & Provini, A. (2010). The case of pollution of Lake Maggiore: A 12-year study with the bioindicator mussel Dreissena polymorpha. Water, Air, & Soil Pollution, 210(1), 75–86. https://doi.org/10.1007/s11270-009-0225-3.

  • Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., et al. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5(1), 14340. https://doi.org/10.1038/srep14340.

    Article  CAS  Google Scholar 

  • Rochman, C. M., Brookson, C., Bikker, J., Djuric, N., Earn, A., Bucci, K., et al. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental Toxicology and Chemistry, 38(4), 703–711. https://doi.org/10.1002/etc.4371.

    Article  CAS  Google Scholar 

  • Roper, D. S., & Hickey, C. W. (1995). Effects of food and silt on filtration, respiration and condition of the freshwater mussel Hyridella menziesi (Unionacea: Hyriidae): Implications for bioaccumulation. Hydrobiologia, 312(1), 17–25. https://doi.org/10.1007/BF00018883.

  • Rzymski, P., Niedzielski, P., Klimaszyk, P., & Poniedziałek, B. (2014). Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environmental Monitoring and Assessment, 186(5), 3199–3212. https://doi.org/10.1007/s10661-013-3610-8.

  • Scherer, C., Weber, A., Lambert, S., & Wagner, M. (2018). Interactions of microplastics with freshwater biota. In M. Wagner & S. Lambert (Eds.), Freshwater microplastics (58th ed., pp. 153–180). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-61615-5_8.

    Chapter  Google Scholar 

  • Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W., & Gomes, R. L. (2019). Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres. Science of the Total Environment, 666, 377–389. https://doi.org/10.1016/j.scitotenv.2019.02.278.

    Article  CAS  Google Scholar 

  • Su, L., Cai, H., Kolandhasamy, P., Wu, C., Rochman, C. M., & Shi, H. (2018). Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environmental Pollution, 234, 347–355. https://doi.org/10.1016/j.envpol.2017.11.075.

    Article  CAS  Google Scholar 

  • Vassilenko, K., Watkins, M., Chastain, S., Posacka, A., & Ross, P. S. (2019). Me, my clothes and the ocean: The role of textiles in microfiber pollution. Vancouver: Ocean Wise Conservation Association.

    Google Scholar 

  • Wagner, R. E. (1976). The effect of size and temperature on the filtration rate of the freshwater mussel, Elliptio complanatus. Bios, 47(4), 168–178.

  • Ward, J. E., Zhao, S., Holohan, B. A., Mladinich, K. M., Griffin, T. W., Wozniak, J., & Shumway, S. E. (2019). Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): Implications for using bivalves as bioindicators of microplastic pollution. Environmental Science & Technology, 53(15), 8776–8784. https://doi.org/10.1021/acs.est.9b02073.

  • Watts, A. J. R., Urbina, M. A., Corr, S., Lewis, C., & Galloway, T. S. (2015). Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environmental Science & Technology, 49(24), 14597–14604. https://doi.org/10.1021/acs.est.5b04026.

  • Wesch, C., Barthel, A.-K., Braun, U., Klein, R., & Paulus, M. (2016). No microplastics in benthic eelpout (Zoarces viviparus): An urgent need for spectroscopic analyses in microplastic detection. Environmental Research, 148, 36–38. https://doi.org/10.1016/j.envres.2016.03.017.

  • Wesch, C., Elert, A. M., Wörner, M., Braun, U., Klein, R., & Paulus, M. (2017). Assuring quality in microplastic monitoring: About the value of clean-air devices as essentials for verified data. Scientific Reports, 7(1), 5424. https://doi.org/10.1038/s41598-017-05838-4.

    Article  CAS  Google Scholar 

  • Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D., & Matrai, P. A. (2018). Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin, 137, 638–645. https://doi.org/10.1016/j.marpolbul.2018.10.061.

  • Xu, X., Hou, Q., Xue, Y., Jian, Y., & Wang, L. (2018). Pollution characteristics and fate of microfibers in the wastewater from textile dyeing wastewater treatment plant. Water Science and Technology, 78(10), 2046–2054. https://doi.org/10.2166/wst.2018.476.

    Article  CAS  Google Scholar 

  • Zhao, S., Zhu, L., & Li, D. (2016). Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Science of the Total Environment, 550, 1110–1115. https://doi.org/10.1016/j.scitotenv.2016.01.112.

    Article  CAS  Google Scholar 

  • Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93–99. https://doi.org/10.1016/j.watres.2017.01.042.

    Article  CAS  Google Scholar 

  • Zubris, K. A. V., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138(2), 201–211. https://doi.org/10.1016/j.envpol.2005.04.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our community contacts, including Jamie Gorman (Wolastoqey Tribal Council) and Ben Whalen (Kennebecasis Watershed Restoration Committee), for their support and assistance in locating and accessing sampling locations, Kate Bredin for assisting in mussel identification, and all personnel who assisted with sample collection, including Amber LeBlanc and Nicholas Saucier. Furthermore, we would like to thank Patrick Gormley for assisting with the laboratory processing and visual inspections and Christina Tardif for constructing the watershed maps. We are grateful for the suggestions of three anonymous reviewers, which helped improve this manuscript.

Funding

This research was funded by an Environment and Climate Change Canada Atlantic Ecosystems Initiatives grant to JK, a Mount Allison Independent Student Research grant (Nova Scotia Power Fund) to CVD, and a Natural Sciences and Engineering Research Council (NSERC) postdoctoral fellowship to ALL.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the study design, field and laboratory analyses, data interpretation, and manuscript preparation.

Corresponding author

Correspondence to Joshua Kurek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors consent to this manuscript being submitted to Water, Air, and Soil Pollution for peer review and potential publication.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doucet, C.V., Labaj, A.L. & Kurek, J. Microfiber Content in Freshwater Mussels from Rural Tributaries of the Saint John River, Canada. Water Air Soil Pollut 232, 32 (2021). https://doi.org/10.1007/s11270-020-04958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04958-4

Keywords

Navigation