Skip to main content
Log in

Lubrication Performance of Hydrogenated Graphene on Diamond-Like Carbon Films Based on Molecular Dynamics Simulation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Graphene is a good candidate for solid lubricants due to its unique atomic structure. Its lubrication properties are sensitive to chemical modifications such as hydrogenations. Here, an investigation on the lubrication behavior of hydrogenated graphene on a substrate of diamond-like carbon films is performed via molecular dynamics simulations. Hydrogenated graphene exhibits excellent lubrication behaviors at low or intermediate normal loads, but loses its lubrication effect at high normal loads. In addition, it is demonstrated that the friction force is unaffected by the asperities with small periodicity around the substrate surface. Moreover, the improved lubrication for multilayer hydrogenated graphene is sensitive to its adhesion interactions with substrate, which is different from previously reported cases. This is because the relative movement of concaves changes as the number of graphene layer increases. Although the rigidity of hydrogenated graphene increases induced by chemical modifications, its larger friction force results from the atomic-level roughness. It is believed that these findings can provide a guideline for the superlubricity design based on the chemically modified graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Peng, W., Sun, K., Abdullah, R., Zhang, M., Chen, J., Shi, J.: Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: a molecular dynamics simulation. Appl. Surf. Sci. 487, 22–31 (2019)

    Article  CAS  Google Scholar 

  2. Yoon, T., Kang, S., Kang, T.Y., Kim, T.S.: Detection of graphene cracks by electromagnetic induction, insensitive to doping level. Comput. Model. Eng. Sci. 120, 351–361 (2019)

    Google Scholar 

  3. Baimova, J.A.: Property control by elastic strain engineering: application to graphene. J. Micromech. Mol. Phys. 02, 1750001 (2017)

    Article  CAS  Google Scholar 

  4. Liu, B., Meng, F., Reddy, C.D., Baimova, J.A., Srikanth, N., Dmitriev, S.V., Zhou, K.: Thermal transport in a graphene-MoS2 bilayer heterostructure: a molecular dynamics study. RSC Adv. 5, 29193–29200 (2015)

    Article  CAS  Google Scholar 

  5. Liu, B., Baimova, J.A., Reddy, C.D., Dmitriev, S.V., Law, W.K., Feng, X.Q., Zhou, K.: Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon 79, 236–244 (2014)

    Article  CAS  Google Scholar 

  6. Lobzenko, I.P.: Discrete breathers modeling from first principles in graphene and in classical approximation in fcc Ni: Comparison. J. Micromech. Mol. Phys. 04, 1950002 (2019)

    Article  CAS  Google Scholar 

  7. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  CAS  Google Scholar 

  8. Yang, J., Liu, Z., Grey, F., Xu, Z., Li, X., Liu, Y., Urbakh, M., Cheng, Y., Zheng, Q.: Observation of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 1–5 (2013)

    Article  Google Scholar 

  9. Wang, K., Ouyang, W., Cao, W., Ma, M., Zheng, Q.: Robust superlubricity by strain engineering. Nanoscale 11, 2186–2193 (2019)

    Article  CAS  Google Scholar 

  10. Mandelli, D., Leven, I., Hod, O., Urbakh, M.: Sliding friction of graphene/hexagonal-boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 1–10 (2017)

    Article  CAS  Google Scholar 

  11. Feng, X., Kwon, S., Park, J.Y., Salmeron, M.: Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013)

    Article  CAS  Google Scholar 

  12. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)

    Article  CAS  Google Scholar 

  13. Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 1–4 (2009)

    Article  Google Scholar 

  14. Kwon, S., Chung, H.J., Seo, S., Park, J.Y.: Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 44, 768–771 (2012)

    Article  CAS  Google Scholar 

  15. Lee, H., Lee, N., Seo, Y., Eom, J., Lee, S.: Comparison of frictional forces on graphene and graphite. Nanotechnology 20, 325701 (2009)

    Article  Google Scholar 

  16. Pumera, M., An Wong, C.H.: Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013)

    Article  CAS  Google Scholar 

  17. Yan, J.A., Xian, L., Chou, M.Y.: Structural and electronic properties of oxidized graphene. Phys. Rev. Lett. 103, 1–4 (2009)

    Article  Google Scholar 

  18. Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., Snow, E.S.: Properties of fluorinated graphene films. Nano Lett. 10, 3001–3005 (2010)

    Article  CAS  Google Scholar 

  19. Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T.G., Hofmann, P., Hornekær, L.: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  CAS  Google Scholar 

  20. Wang, J., Wang, F., Li, J., Wang, S., Song, Y., Sun, Q., Jia, Y.: Theoretical study of superlow friction between two single-side hydrogenated graphene sheets. Tribol. Lett. 48, 255–261 (2012)

    Article  CAS  Google Scholar 

  21. Deng, Z., Smolyanitsky, A., Li, Q., Feng, X.Q., Cannara, R.J.: Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 11, 1032–1037 (2012)

    Article  CAS  Google Scholar 

  22. Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015)

    Article  CAS  Google Scholar 

  23. Ko, J.H., Kwon, S., Byun, I.S., Choi, J.S., Park, B.H., Kim, Y.H., Park, J.Y.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50, 137–144 (2013)

    Article  CAS  Google Scholar 

  24. Lee, C., Li, Q., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)

    Article  CAS  Google Scholar 

  25. Li, Q., Liu, X.Z., Kim, S.P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., Carpick, R.W.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14, 5212–5217 (2014)

    Article  CAS  Google Scholar 

  26. Dong, Y., Wu, X., Martini, A.: Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701 (2013)

    Article  Google Scholar 

  27. Lu, Z., Li, J., Shao, H., Gleiter, H., Ni, X.: The correlation between shear elastic modulus and glass transition temperature of bulk metallic glasses. Appl. Phys. Lett. 94, 12–15 (2009)

    Google Scholar 

  28. Schroers, J., Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004)

    Article  Google Scholar 

  29. Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager, J.W., Brown, I.G., Bhatia, C.S., Silva, S.R.P., Robertson, J.: Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779–781 (1996)

    Article  CAS  Google Scholar 

  30. Bai, L., Qi, J., Lu, Z., Zhang, G., Wang, L., Wang, Y., Wu, Z., Yan, P.: Theoretical study on tribological mechanism of solid lubricating films in a sand-dust environment. Tribol. Lett. 49, 545–551 (2013)

    Article  Google Scholar 

  31. Chen, Y.N., Ma, T.B., Chen, Z., Hu, Y.Z., Wang, H.: Combined effects of structural transformation and hydrogen passivation on the frictional behaviors of hydrogenated amorphous carbon films. J. Phys. Chem. C 119, 16148–16155 (2015)

    Article  CAS  Google Scholar 

  32. Andersson, J., Erck, R.A., Erdemir, A.: Friction of diamond-like carbon films in different atmospheres. Wear 254, 1070–1075 (2003)

    Article  CAS  Google Scholar 

  33. Peng, Y., Wang, Z., Zou, K.: Friction and wear properties of different types of graphene nanosheets as effective solid lubricants. Langmuir 31, 7782–7791 (2015)

    Article  CAS  Google Scholar 

  34. Lee, W.J., Lo, Y.C., Yang, A., Chen, K., Chen, N.Y.: Thickness effect of nanocrystalline layer on the deformation mechanism of amorphous/crystalline multilayered structure. Comput. Model. Eng. Sci. 120, 293–304 (2019)

    Google Scholar 

  35. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D Appl. Phys. 41, 123001 (2008)

    Article  Google Scholar 

  36. Xu, L., Ma, T.B., Hu, Y.Z., Wang, H.: Molecular dynamics simulation of the interlayer sliding behavior in few-layer graphene. Carbon 50, 1025–1032 (2012)

    Article  CAS  Google Scholar 

  37. Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., Sun, J., Li, J.: The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016)

    Article  CAS  Google Scholar 

  38. Bai, L., Srikanth, N., Korznikova, E.A., Baimova, J.A., Dmitriev, S.V., Zhou, K.: Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear 372–373, 12–20 (2017)

    Article  Google Scholar 

  39. Bai, L., Srikanth, N., Wu, H., Liu, Y., Liu, B., Zhou, K.: Investigation on tensile behaviors of diamond-like carbon films. J. Non Cryst. Solids 443, 8–16 (2016)

    Article  CAS  Google Scholar 

  40. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  41. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  42. Humphrey, W., Dalke, A., Schulten, K.: Visual molecular dyanmics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  43. Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  CAS  Google Scholar 

  44. Zhang, H., Chang, T.: Edge orientation dependent nanoscale friction. Nanoscale 10, 2447–2453 (2018)

    Article  CAS  Google Scholar 

  45. Klemenz, A., Pastewka, L., Balakrishna, S.G., Caron, A., Bennewitz, R., Moseler, M.: Atomic scale mechanisms of friction reduction and wear protection by graphene. Nano Lett. 14, 7145–7152 (2014)

    Article  CAS  Google Scholar 

  46. Marchetto, D., Held, C., Hausen, F., Wählisch, F., Dienwiebel, M., Bennewitz, R.: Friction and wear on single-layer epitaxial graphene in multi-asperity contacts. Tribol. Lett. 48, 77–82 (2012)

    Article  CAS  Google Scholar 

  47. Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)

    Article  CAS  Google Scholar 

  48. Verma, A., Parashar, A.: The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys. Chem. Chem. Phys. 19, 16023–16037 (2017)

    Article  CAS  Google Scholar 

  49. Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008)

    Article  CAS  Google Scholar 

  50. Şahin, H., Ataca, C., Ciraci, S.: Electronic and magnetic properties of graphane nanoribbons. Phys. Rev. B 81, 205417 (2010)

    Article  Google Scholar 

  51. Medyanik, S.N., Liu, W.K., Sung, I.H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 1–4 (2006)

    Article  Google Scholar 

  52. Smolyanitsky, A., Killgore, J.P.: Anomalous friction in suspended graphene. Phys. Rev. B 86, 1–5 (2012)

    Article  Google Scholar 

  53. Ansari, R., Mirnezhad, M., Rouhi, H.: Mechanical properties of fully hydrogenated graphene sheets. Solid State Commun. 201, 1–4 (2015)

    Article  CAS  Google Scholar 

  54. Byun, I.S., Yoon, D., Choi, J.S., Hwang, I., Lee, D.H., Lee, M.J., Kawai, T., Son, Y.W., Jia, Q., Cheong, H., Park, B.H.: Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5, 6417–6424 (2011)

    Article  CAS  Google Scholar 

  55. Li, Q., Lee, C., Carpick, R.W., Hone, J.: Substrate effect on thickness-dependent friction on graphene. Phys. Status Solidi Basic Res. 247, 2909–2914 (2010)

    Article  CAS  Google Scholar 

  56. Moseler, M., Cumbsch, P., Casiraghi, C., Ferrari, A.C., Robertson, J.: The ultrasmoothness of diamond-like carbon surfaces. Science 309, 1545–1548 (2005)

    Article  CAS  Google Scholar 

  57. Ouyang, W., Ma, M., Zheng, Q., Urbakh, M.: Frictional properties of nanojunctions including atomically thin sheets. Nano Lett. 16, 1878–1883 (2016)

    Article  CAS  Google Scholar 

  58. Fang, J., Chen, B., Pan, H.: Anomalous friction of graphene nanoribbons on waved graphenes. Theor. Appl. Mech. Lett. 5, 212–215 (2015)

    Article  Google Scholar 

  59. Wang, M.C., Yan, C., Ma, L., Hu, N., Chen, M.W.: Effect of defects on fracture strength of graphene sheets. Comput. Mater. Sci. 54, 236–239 (2012)

    Article  CAS  Google Scholar 

  60. Vasić, B., Matković, A., Ralević, U., Belić, M., Gajić, R.: Nanoscale wear of graphene and wear protection by graphene. Carbon 120, 137–144 (2017)

    Article  Google Scholar 

  61. Abdullah Tasdemir, H., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., Higuchi, T.: Wear behaviour of tetrahedral amorphous diamond-like carbon (ta-C DLC) in additive containing lubricants. Wear 307, 1–9 (2013)

    Article  CAS  Google Scholar 

  62. Guo, Y., Guo, W., Chen, C.: Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys. Rev. B 76, 155429 (2007)

    Article  Google Scholar 

  63. Pan, A.F., Wang, W.J., Mei, X.S., Wang, K.D., Zhao, W.Q., Li, T.Q.: Laser thermal effect on silicon nitride ceramic based on thermo-chemical reaction with temperature-dependent thermo-physical parameters. Appl. Surf. Sci. 375, 90–100 (2016)

    Article  CAS  Google Scholar 

  64. Kwon, S., Ko, J.H., Jeon, K.J., Kim, Y.H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)

    Article  CAS  Google Scholar 

  65. Fessler, G., Eren, B., Gysin, U., Glatzel, T., Meyer, E.: Friction force microscopy studies on SiO2 supported pristine and hydrogenated graphene. Appl. Phys. Lett. 104, 10–14 (2014)

    Article  Google Scholar 

  66. Smolyanitsky, A., Killgore, J.P., Tewary, V.K.: Effect of elastic deformation on frictional properties of few-layer graphene. Phys. Rev. B 85, 1–6 (2012)

    Article  Google Scholar 

  67. Harrison, J.A., Colton, R.J., White, C.T., Brenner, D.W.: Effect of atomic-scale surface roughness on friction: a molecular dynamics study of diamond surfaces. Wear 168, 127–133 (1993)

    Article  CAS  Google Scholar 

  68. Ye, Z., Tang, C., Dong, Y., Martini, A.: Role of wrinkle height in friction variation with number of graphene layers. J. Appl. Phys. 112, 10–13 (2012)

    Article  Google Scholar 

  69. Vasić, B., Matković, A., Gajić, R., Stanković, I.: Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation. Carbon 107, 723–732 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support of the National Natural Science Foundation of China (51405517, U1334208) and the Natural Science Foundation of Hunan Province (2015JJ3155, 2019JJ50622). This paper was supported by the High Performance Computing Center of Central South University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Peng, Y., Tang, X. et al. Lubrication Performance of Hydrogenated Graphene on Diamond-Like Carbon Films Based on Molecular Dynamics Simulation. Tribol Lett 69, 12 (2021). https://doi.org/10.1007/s11249-020-01382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01382-x

Keywords

Navigation