Skip to main content
Log in

Solutions of the Yamabe Equation by Lyapunov–Schmidt Reduction

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Given any closed Riemannian manifold (Mg) we use the Lyapunov–Schmidt finite-dimensional reduction method and the classical Morse and Lusternick–Schnirelmann theories to prove multiplicity results for positive solutions of a subcritical Yamabe type equation on (Mg). If (Nh) is a closed Riemannian manifold of constant positive scalar curvature we obtain multiplicity results for the Yamabe equation on the Riemannian product \((M\times N , g + \varepsilon ^2 h )\), for \(\varepsilon >0\) small. For example, if M is a closed Riemann surface of genus \(\mathbf{g}\) and \((N,h) = (S^2 , g_0)\) is the round 2-sphere, we prove that for \(\varepsilon >0\) small enough and a generic metric g on M, the Yamabe equation on \((M\times S^2 , g + \varepsilon ^2 g_0 )\) has at least \(2 + 2 \mathbf{g}\) solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akutagawa, K., Florit, L., Petean, J.: On Yamabe constants of Riemannian products. Commun. Anal. Geom. 15, 947–969 (2007)

    Article  MathSciNet  Google Scholar 

  2. Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bahri, A., Coron, J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect on the topology of the domain. Commun. Pure. Appl. Math. 41, 253–294 (1988)

    Article  MathSciNet  Google Scholar 

  4. Bettiol, R., Piccione, P.: Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions. Pac. J. Math. 266, 1–21 (2013)

    Article  MathSciNet  Google Scholar 

  5. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21, 951–979 (2008)

    Article  MathSciNet  Google Scholar 

  6. Brendle, S., Marques, F.C.: Blow-up phenomena for the Yamabe equation II. J. Differ. Geom. 81(2), 225–250 (2009)

    Article  MathSciNet  Google Scholar 

  7. De Lima, L.L., Piccione, P., Zedda, M.: A note on the uniqueness of solutions for the Yamabe problem. Proc. Am. Math. Soc. 140, 4351–4357 (2012)

    Article  MathSciNet  Google Scholar 

  8. De Lima, L.L., Piccione, P., Zedda, M.: On bifurcation of solutions of the Yamabe problem in product manifolds. Ann. Inst. Henri Poincaré C 29, 261–277 (2012)

    Article  MathSciNet  Google Scholar 

  9. Deng, S., Khemiri, Z., Mahmoudi, F.: On spike solutions for a singularly preturbed problem in a compact Riemannian manifold. Commun. Pure Appl. Anal. 17, 2063–2084 (2018)

    Article  MathSciNet  Google Scholar 

  10. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  11. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of Positive Solutions of Nonlinear Elliptic Equations in \({ R}^n\). Mathematical Analysis and Applications, Advanced Mathematical Supplemented Studies 7A, pp. 369–402. Academic Press, New York (1981)

    MATH  Google Scholar 

  12. Henry, G., Petean, J.: Isoparametric hypersurfaces and metrics of constant scalar curvature. Asian J. Math. 18, 53–67 (2014)

    Article  MathSciNet  Google Scholar 

  13. Jin, Q., Li, Y.Y., Xu, H.: Symmetry and asymmetry: the method of moving spheres. Adv. Differ. Equ. 13, 601–640 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279, 253–265 (1987)

    Article  MathSciNet  Google Scholar 

  15. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u -u + u^p =0\) in \({ R}^n\). Arch. Rational. Mech. Anal. 105, 243–266 (1989)

    Article  MathSciNet  Google Scholar 

  16. Khuri, M.A., Marques, F.C., Schoen, R.M.: A compactness theorem for the Yamabe Problem. J. Differ. Geomet. 81, 143–196 (2009)

    Article  MathSciNet  Google Scholar 

  17. Li, Y.Y., Nirenberg, L.: The Dirichlet problem for singularly perturbed elliptic equations. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  Google Scholar 

  18. Micheletti, A.M., Pistoia, A.: The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds. Calc. Variations PDE 34, 233–265 (2009)

    Article  MathSciNet  Google Scholar 

  19. Micheletti, A.M., Pistoia, A.: Generic properties of critical points of the scalar curvature for a Riemannian manifold. Proc. Am. Math. Soc. 138, 3277–3284 (2010)

    Article  MathSciNet  Google Scholar 

  20. Obata, M.: The conjectures on conformal transformations for a conformally invariant scalar equation. J. Diff. Geom. 6, 247–258 (1971)

    MATH  Google Scholar 

  21. Petean, J.: Metrics of constant scalar curvature conformal to Riemannian products. Proc. Am. Math. Soc. 138, 2897 (2010)

    Article  MathSciNet  Google Scholar 

  22. Petean, J.: Multiplicity results for the Yamabe equation by Lusternik-Schnirelmann Theory. J. Funct. Anal. 276, 1788–1805 (2019)

    Article  MathSciNet  Google Scholar 

  23. Pollack, D.: Nonuniqueness and high energy solutions for a conformally invariant scalar equation. Commun. Anal. Geom. 1, 347–414 (1993)

    Article  MathSciNet  Google Scholar 

  24. Rey, C., Ruiz, J.M.: Multipeak solutions for the Yamabe equation. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00258-4

    Article  MATH  Google Scholar 

  25. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Article  MathSciNet  Google Scholar 

  26. Schoen, R.: Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics in the Calculus of Variations. Lectures Notes in Mathematics, vol. 1365, pp. 120–154. Springer, Berlin (1989)

    Google Scholar 

  27. Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 22, 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  28. Wei, J., Winter, M.: Mathematics Aspects of Pattern Formations in Biological System. AMS 189. Springer, Berlin (2014)

    Book  Google Scholar 

  29. Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Most of the work in this paper was done during the Isidro H. Munive’s visit to the Center for Mathematical Research (CIMAT A.C.), which the author thanks for its hospitality. We also wish to thank Prof. Jimmy Petean for his constant interest and the many helpful conversations on the Yamabe equation.

Funding

Isidro H. Munive was partially supported by Proyecto FORDECYT 265667, CONACYT, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro H. Munive.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dávila, J., Munive, I.H. Solutions of the Yamabe Equation by Lyapunov–Schmidt Reduction. J Geom Anal 31, 8080–8104 (2021). https://doi.org/10.1007/s12220-020-00570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00570-4

Keywords

Mathematics Subject Classification

Navigation