Skip to main content
Log in

Enlarge or die! An auxospore perspective on diatom diversification

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Sexual reproductive cells and processes are highly conserved in a wide range of organisms. A specialized, expandable zygote called the auxospore is a cell known only in diatoms. Auxospores perform two critical functions in the life cycle of most diatoms: (1) as in other sexual organisms, they confer the benefits of genetic recombination to diatom progeny, and (2) restore larger cell size and allow a new cycle of vegetative cell size diminution to commence. Because of this dual importance in the diatom life cycle, the auxospore is strongly conserved, in contrast to the astounding diversity of forms among diatom vegetative cells. The auxospore is a complex cell which develops in a specific sequence of stages with a variety of characteristic structures recognizable across all diatoms. With only two major blueprints for auxospore growth and development (isodiametric and anisodiametric) and a number of highly conserved associated structures, studying this aspect of the diatom life cycle may reveal much about their deep evolutionary history. In the evolutionarily more recent arrivals (i.e., pennates), additional reproductive characters may be informative, e.g., mode of gamete motility, anisogamy vs. isogamy. We argue that combined with the widely varying but taxon-specific aspects of diatom gametogenetic processes, auxospores are excellent tools for cross group comparisons that provide insight into their evolutionary relationships. Expanding our dataset from 21 genera presented in 2004 to 65 polar centrics, nonpolar centrics, and araphid pennates, we repostulate that the evolutionarily informative capacity of auxospore development stands on its own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the results in this article are included in the text, table, and figures for the article.

References

  • Agardh, C. A. (1824). Systema algarum. Lundae: Literis Berlingianis.

    Google Scholar 

  • Agardh, C. A. (1832). Conspectus criticus diatomacearum, Part 4. Lundae: Literis Berlingianus.

    Google Scholar 

  • Alverson, A. J., Cannone, J. J., Gutell, R. R., & Theriot, E. C. (2006). The evolution of elongate shape in diatoms. Journal of Phycology, 42(3), 655–668.

    CAS  Google Scholar 

  • Alverson, A. J., Jansen, R. K., & Theriot, E. C. (2007). Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, 45(1), 193–210.

    CAS  PubMed  Google Scholar 

  • Amato, A. (2010). Diatom reproductive biology: Living in a crystal cage. The International Journal of Plant Reproductive Biology, 2(1), 1–10.

    Google Scholar 

  • Ashworth, M. P., Ruck, E. C., Lobban, C. S., Romanovicz, D. K., & Theriot, E. C. (2012). A revision of the genus Cyclophora and description of Astrosyne gen. nov. (Bacillariophyta), two genera with pyrenoids contained within pseudosepta. Phycologia, 51(6), 684–699.

    Google Scholar 

  • Assmy, P., Hernández-Becerril, D. U., & Montresor, M. (2008). Morphological variability and life cycle traits of the type species of the diatom genus Chaetoceros. C. dichaeta. Journal of Phycology, 44(1), 152–163.

    Google Scholar 

  • Bachmann, H. (1903). Botanische Untersuchungen des Vierwaldstättersees. I. Cyclotella bodanica var. lemanica O. Müller im Vierwaldstättersee un ihre Auxosporenbildung. Jahrbücher für Wissenschaftliche Botanik, 39, 106–133.

  • Basu, S., Patil, S., Mapleson, D., Russo, M. T., Vitale, L., Fevola, C., Maumus, F., Casotti, R., Mock, T., Caccamo, M., Montresor, M., Sanges, R., & Ferrante, M. I. (2017). Finding a partner in the ocean: Molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytologist, 215(1), 140–156.

    CAS  Google Scholar 

  • Becks, L., & Agrawal, A. F. (2010). Higher rates of sex evolve in spatially heterogeneous environments. Nature, 468(7320), 89–92.

    CAS  PubMed  Google Scholar 

  • Beraldi-Campesi, H. (2014). Life cycle of a Cretaceous non-marine centric diatom. Cretaceous Research, 50, 89–96.

    Google Scholar 

  • Burki, F., Roger, A. J., Brown, M. W., & Simpson, A. G. B. (2019). The new tree of eukaryotes. Trends in Ecology & Evolution, 35(1), 43–55.

    Google Scholar 

  • Chepurnov, V. A., & Mann, D. G. (2004). Auxosporulation of Licmophora communis (Bacillariophyta) and a review of mating systems and sexual reproduction in araphid pennate diatoms. Phycological Research, 52(1), 1–12.

    Google Scholar 

  • Chepurnov, V. A., Mann, D. G., von Dassow, P., Armbrust, E. V., Sabbe, K., Dasseville, R., & Vyverman, W. (2006). Oogamous reproduction, with two-step auxosporulation, in the centric diatom Thalassiosira punctigera (Bacillariophyta). Journal of Phycology, 42(4), 845–858.

    Google Scholar 

  • Chepurnov, V. A., Chaerle, P., Vanhoutte, K., & Mann, D. G. (2012). How to breed diatoms: Examination of two species with contrasting reproductive biology. In R. Gordon & J. Seckbach (Eds.), The science of algal fuels: Phycology, geology, biophotonics, genomics and nanotechnology (pp. 325–340). Dordrecht: Springer.

    Google Scholar 

  • Chepurnov, V. A., Steigüber, C. G., & Siegel, P. (2018). Diatoms as hatchery feed: On-site cultivation and alternatives. Hatcheryfeed, 6(3), 23–27.

    Google Scholar 

  • Cholnoky, B. (1933). Die Kernteilung von Melosira arenaria nebst einigen Bemerkungen über ihre Auxosporenbildung. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 19, 698–719.

    Google Scholar 

  • Cleve, P. T., & Grunow, A. (1880). Beiträge zur Kenntniss der arctischen Diatomeen. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 17(2), 1–121.

    Google Scholar 

  • Cleve-Euler, A. (1951). Die Diatomeen von Schweden und Finnland. Kungliga Svenska Vetenskapsakademiens Handlingar, Fjärde Serien, 2(1), 1–163.

    Google Scholar 

  • Crawford, R. M. (1974). The auxospore wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. and related species. British Phycological Journal, 9(1), 9–20.

    Google Scholar 

  • Crawford, R. M. (1975). The frustule of the initial cells of some species of the diatom genus Melosira C. Agardh. Nova Hedwigia. Beiheft, 53, 37–55.

    Google Scholar 

  • Crawford, R. M. (1981). The diatom genus Aulacoseira Thwaites: Its structure and taxonomy. Phycologia, 20(2), 174–192.

    Google Scholar 

  • Crawford, R. M. (1995). The role of sex in the sedimentation of a marine diatom bloom. Limnology and Oceanography, 40(1), 200–204.

    Google Scholar 

  • Cupp, E. E. (1943). Marine plankton diatoms of the west coast of North America. Berkeley: University of California Press.

    Google Scholar 

  • Davidovich, N. A., & Davidovich, O. I. (2010). Sexual reproduction and mating system of Tabularia tabulata (C. Agardh) Snoeijs (Bacillariophyta). Algologiya, 20(4), 385–405.

    Google Scholar 

  • Davidovich, N. A., Kaczmarska, I., & Ehrman, J. M. (2010). Heterothallic and homothallic sexual reproduction in Tabularia fasciculata (Bacillariophyta). Fottea, 10(2), 251–266.

    Google Scholar 

  • Davidovich, N. A., Kaczmarska, I., Karpov, S. A., Davidovich, O. I., MacGillivary, M. L., & Mather, L. (2012). Mechanism of male gamete motility in araphid pennate diatoms from the genus Tabularia (Bacillariophyta). Protist, 163(3), 480–494.

    PubMed  Google Scholar 

  • Davidovich, N. A., Davidovich, O. I., Podunay, Y. A., Gastineau, R., Kaczmarska, I., Poulíčková, A., & Witkowski, A. (2017). Ardissonea crystallina has a type of sexual reproduction that is unusual for centric diatoms. Scientific Reports, 7, 14670.

    PubMed  PubMed Central  Google Scholar 

  • Dorrell, R., & Smith, A. G. (2011). Do red and green make brown?: Perspectives on plastid acquisitions within chromalveolates. Eukaryotic Cell, 10(7), 856–868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drebes, G. (1966). On the life history of the marine plankton diatom Stephanopyxis palmeriana. Helgoländer Wissenschaftliche Meeresuntersuchungen, 13, 101–114.

    Google Scholar 

  • Drebes, G. (1967). Bacteriastrum solitarium Mangin, a stage in the life history of the centric diatom Bacteriastrum hyalinum. Marine Biology, 1(1), 40–42.

    Google Scholar 

  • Drebes, G. (1968). Subdiozie bei der zentrischen Diatomee Coscinodiscus granii. Naturwissenschaften, 55, 236.

    CAS  PubMed  Google Scholar 

  • Drebes, G. (1972). The life history of the centric diatom Bacteriastrum hyalinum Mangin. Nova Hedwigia. Beiheft, 39, 95–110.

    Google Scholar 

  • Drebes, G. (1974). Marines Phytoplankton - Eine Auswahl der Helgoländer Planktonalgen (Diatomeen, Peridineen). Stuttgart: Theime.

    Google Scholar 

  • Drebes, G. (1977). Sexuality. In D. Werner (Ed.), The biology of diatoms (pp. 250–283). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Drebes, G. (1979). Oogame Auxosporenbildung bei Thalassiosira eccentrica. Jahresbericht - Biologische Anstalt Helgoland, 15, 15–17.

    Google Scholar 

  • Edgar, R., Drolet, D., Ehrman, J. M., & Kaczmarska, I. (2014). Motile gametes of the araphid diatom Tabularia fasciculata search randomly for mates. PLoS One, 9(7), e101767.

    PubMed  PubMed Central  Google Scholar 

  • Edlund, M. B., & Stoermer, E. F. (1991). Sexual reproduction in Stephanodiscus niagarae (Bacillariophyta). Journal of Phycology, 27(6), 780–793.

    Google Scholar 

  • Ehrenberg, C. G. (1839). Über jetzt wirklich noch zahlreich lebende Thier-Arten der Kreideformation der Erde. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 1839, 152–159.

    Google Scholar 

  • Ehrenberg, C. G. (1840). Characteristik von 274 neuen Arten von Infusorien. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 1840, 197–219.

    Google Scholar 

  • Ehrenberg, C. G. (1844). Mittheilung über 2 neue Lager von Gebirgsmassen aus Infusorien als Meeres-Absatz in Nord-Amerika und eine Vergleichung derselben mit den organischen Kreide-Gebilden in Europa und Afrik. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 1844, 57–97.

    Google Scholar 

  • Ehrlich, A., Crawford, R. M., & Round, F. E. (1982). A study of the diatom Cerataulus laevis—The structure of the auxospore and the initial cell. British Phycological Journal, 17(2), 205–214.

    Google Scholar 

  • Ferrante, M. I., Entrambasaguas, L., Johansson, M., Töpel, M., Kremp, A., Montresor, M., & Godhe, A. (2019). Exploring molecular signs of sex in the marine diatom Skeletonema marinoi. Genes, 10(7), 494.

    CAS  PubMed Central  Google Scholar 

  • Findlay, I. W. O. (1969). Cell size and spore formation in a clone of a centric diatom, Coscinodiscus pavillardii Forti. Phykos, 8(1–2), 31–41.

    Google Scholar 

  • Forti, A. (1922). Ricerche su la flora pelagica (fitoplankton) di Quarto dei Mille (Mari Ligure). Memoria, Reale Comitato Talassografico Italiano. Laboratorio marino di Quarto dei Mille Presso Genova, 97, 1–248.

    Google Scholar 

  • French, F. W., & Hargraves, P. E. (1985). Spore formation in the life cycles of the diatoms Chaetoceros diadema and Leptocylindrus danicus. Journal of Phycology, 21(3), 477–483.

    Google Scholar 

  • Fryxell, G. A., & Hasle, G. R. (1977). The genus Thalassiosira: Species with a modified ring of central strutted processes. In R. Simonsen (Ed.), Proceedings of the Fourth Symposium on Recent and Fossil Marine Diatoms, Nova Hedwigia, Beiheft, 54, 67–98.

  • Furnas, M. J. (1975). The life cycle of the marine diatom Chaetoceros curvisetum Cleve and the influence of light intensity and temperature on growth rate and chemical composition in relation to cell size. PhD thesis, Kingston: University of Rhode Island.

  • Gargas, C. B., Theriot, E. C., Ashworth, M. P., & Johansen, J. R. (2018). Phylogenetic analysis reveals that the ‘radial centric’ diatom Orthoseira Thwaites (Orthoseiraceae, Bacillariophyta) is a member of a ‘multipolar’ diatom lineage. Protist, 169(6), 803–825.

    PubMed  Google Scholar 

  • Geitler, L. (1940). Die Auxosporenbildung von Meridion circulare. Archiv für Protistenkunde, 93, 288–294.

    Google Scholar 

  • Geitler, L. (1952). Oogamie, Mitose, Meiose und metagame Teilung bei der zentrischen Diatomee Cyclotella. Österreichische Botanische Zeitschrift, 99, 506–520.

    Google Scholar 

  • Geitler, L. (1958). Notizen über Rassenbildung, Fortpflanzung, Formwechsel und mophologische Eigentümlichkeiten bei pennaten Diatomeen. Österreichische Botanische Zeitschrift, 105, 408–442.

    Google Scholar 

  • Geitler, L. (1973). Auxosporenbildung und Systematik bei pennaten Diatomeen und die Cytologie von Cocconeis-Sippen. Österreichische Botanische Zeitschrift, 122, 299–321.

    Google Scholar 

  • Goddard, M. R. (2016). Molecular evolution: Sex accelerates adaptation. Nature, 531, 176–177.

    CAS  PubMed  Google Scholar 

  • Godhe, A., Kremp, A., & Montresor, M. (2014). Genetic and microscopic evidence for sexual reproduction in the centric diatom Skeletonema marinoi. Protist, 165(4), 401–416.

    PubMed  Google Scholar 

  • Gran, H. H., & Angst, E. C. (1931). Plankton diatoms of Puget Sound. Publications Puget Sound Biological Station, 7, 417–519.

    Google Scholar 

  • Gross, F. (1937). I—The life history of some marine plankton diatoms. Philosophical Transactions of the Royal Society of London, Series B, 228(548), 1–47.

    Google Scholar 

  • Grunow, A. (1863). Über einige neue und ungenugend bekkante Arten und Gattungen von Diatomaceen. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien, 13, 137–162.

    Google Scholar 

  • Guillou, L. (2011). Characterization of the Parmales: Much more than the resolution of a taxonomic enigma. Journal of Phycology, 47(1), 2–4.

    PubMed  Google Scholar 

  • Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L. K., Claustre, H., Loiseaux-de Goër, S., & Vaulot, D. (1999). Bolidomonas: A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology, 35(2), 368–381.

    Google Scholar 

  • Hargraves, P. E. (1990). Studies on marine planktonic diatoms. V. Morphology and distribution of Leptocylindrus minimus Gran. Nova Hedwigia. Beiheft, 100, 47–60.

    Google Scholar 

  • Harwood, D. M., & Gersonde, R. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 2: Resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms. Proceedings of the Ocean Drilling Program Scientific Results, 113, 403–425.

  • Hasle, G. R., & Fryxell, G. A. (1977). The genus Thalassiosira: Some species with a linear areola array. In R. Simonsen (Ed.), Proceedings of the Fourth Symposium on Recent and Fossil Marine Diatoms, Nova Hedwigia, Beiheft, 54, 15–66.

  • Hasle, G. R., von Stosch, H. A., & Syvertsen, E. E. (1983). Cymatosiraceae, a new diatom family. Bacillaria, 6, 9–156.

    Google Scholar 

  • Heath, I. B., & Darley, W. M. (1972). Observations on the ultrastructure of the male gametes of Biddulphia levis Ehr. Journal of Phycology, 8(1), 51–59.

    Google Scholar 

  • Hegde, S., Narale, D. D., & Anil, A. C. (2011). Sexual reproduction in Odontella regia (Schultze) Simonsen 1974 (Bacillariophyta). Current Science, 101(2), 222–225.

    Google Scholar 

  • Heiberg, P. A. C. (1863). Conspectus criticus diatomacearum danicarum. Kritisk oversigt over de danske Diatomeer. Kjøbenhavn: Wilhelm Priors Forlag.

    Google Scholar 

  • Hoban, M. A. (2008). Biddulphioid diatoms III: Morphology and taxonomy of Odontella aurita and Odontella longicruris (Bacillariophyta, Bacillariophytina, Mediophyceae) with comments on the sexual reproduction of the latter. Nova Hedwigia. Beiheft, 133, 47–65.

    Google Scholar 

  • Holmes, R. W. (1967). Auxospore formation in two marine clones of the diatom genus Coscinodiscus. American Journal of Botany, 54(2), 163–168.

    Google Scholar 

  • Hoops, H. J., & Floyd, G. L. (1979). Ultrastructure of the centric diatom, Cyclotella meneghiniana: Vegetative cell and auxospore development. Phycologia, 18(4), 424–435.

    Google Scholar 

  • Hoppenrath, M., Elbrächter, M., & Drebes, G. (2009). Marine phytoplankton: Selected microphytoplankton species from the North Sea around Helgoland and Sylt. Stuttgart: Schweizerbart Science Publishers.

    Google Scholar 

  • Hori, T. (Ed.). (1993). An illustrated atlas of the life history of algae, vol. 3. Unicellular and flagellated algae. Tokyo: Uchida Rokakuho.

    Google Scholar 

  • Horner, R. A. (2002). A taxonomic guide to some common marine phytoplankton. Bristol: Biopress Limited.

    Google Scholar 

  • Hustedt, F. (1923). Zur Morphologie und Auxosporenbildung von Melosira jürgensi Ag. und M. arenaria Moore. Archiv für Hydrobiologie, 14, 720–725.

    Google Scholar 

  • Ichinomiya, M., Yoshikawa, S., Kamiya, M., Ohki, K., Takaichi, S., & Kuwata, A. (2011). Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, Western North Pacific. Journal of Phycology, 47(1), 144–151.

    PubMed  Google Scholar 

  • Idei, M., & Chihara, M. (1992). Successive observations on the fertilization of a centric diatom Melosira moniliformis var. octagona. Botanical Magazine, Tokyo, 105(4), 649–658.

    Google Scholar 

  • Idei, M., & Nagumo, T. (2002). Auxospore structure of the marine diatom genus Lampriscus with triangular / quadrangular forms. In M. Poulin (Ed.), Proceedings of the 17th international diatom symposium—Abstracts. International Society for Diatom Research: Ottawa.

    Google Scholar 

  • Idei, M., & Nagumo, T. (2004). Auxospore structure of a triangular diatom Trigonium formosum. In M. A. Grachev & E. V. Likhoshvaj (Eds.), International Symposium: The Living Diatom Cell: 100 Years A.P. Skabichevsky Memorial – Abstracts. Irkutsk: Izdatel’stvo Instituta geografii.

  • Idei, M., Osada, K., Sato, S., Toyoda, K., Nagumo, T., & Mann, D. G. (2012). Gametogenesis and auxospore development in Actinocyclus (Bacillariophyta). PLoS One, 7(8), e41890.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idei, M., Osada, K., Sato, S., Nakayama, T., Nagumo, T., & Mann, D. G. (2013a). Sperm ultrastructure in the diatoms Melosira and Thalassiosira and the significance of the 9+0 configuration. Protoplasma, 250(4), 833–850.

    CAS  PubMed  Google Scholar 

  • Idei, M., Sato, S., Watanabe, T., Nagumo, T., & Mann, D. G. (2013b). Sexual reproduction and auxospore structure in Diploneis papula (Bacillariophyta). Phycologia, 52(3), 295–308.

    Google Scholar 

  • Idei, M., Sato, S., Nagasato, C., Motomura, T., Toyoda, K., Nagumo, T., & Mann, D. G. (2015). Spermatogenesis and auxospore structure in the multipolar centric diatom Hydrosera. Journal of Phycology, 51(1), 144–158.

    PubMed  Google Scholar 

  • Iyengar, M. O. P., & Subrahmanyan, R. (1944). On reduction division and auxospore formation in Cyclotella meneghiniana Kütz. The Journal of the Indian Botanical Society, 23, 125–154.

    Google Scholar 

  • Jensen, K. G., Moestrup, Ø., & Schmid, A.-M. M. (2003). Ultrastructure of the male gametes from two centric diatoms, Chaetoceros laciniosus and Coscinodiscus wailesii (Bacillariophyceae). Phycologia, 42(1), 98–105.

    Google Scholar 

  • Jewson, D. H. (1992a). Life cycle of Stephanodiscus sp. (Bacillariophyta). Journal of Phycology, 28(6), 856–866.

    Google Scholar 

  • Jewson, D. H. (1992b). Size reduction, reproductive strategy and the life cycle of a centric diatom. Philosophical Transactions of the Royal Society of London, Series B, 336(1277), 191–213.

    Google Scholar 

  • Jewson, D. H., & Harwood, D. M. (2017). Diatom life cycles and ecology in the Cretaceous. Journal of Phycology, 53(3), 616–628.

    PubMed  Google Scholar 

  • Jewson, D. H., Khondker, M., Rahman, M. H., & Lowry, S. (1993). Auxosporulation of the freshwater diatom Aulacoseira herzogii in Lake Banani, Bangladesh. Diatom Research, 8(2), 403–418.

    Google Scholar 

  • Kaczmarska, I., & Ehrman, J. M. (2015). Auxosporulation in Paralia guyana MacGillivary (Bacillariophyta) and possible new insights into the habit of the earliest diatoms. PLoS One, 10(10), e0141150.

    PubMed  PubMed Central  Google Scholar 

  • Kaczmarska, I., & Ehrman, J. M. (2019). Auxospore wall structure and postsexual valve morphology in Rhabdonema minutum Kützing. Plant and Fungal Systematics, 64(1), 33–40.

    Google Scholar 

  • Kaczmarska, I., Bates, S. S., Ehrman, J. M., & Léger, C. (2000). Fine structure of the gamete, auxospore and initial cell in the pennate diatom Pseudo-nitzschia multiseries (H.) Hasle. Nova Hedwigia, 71(3–4), 337–351.

    Google Scholar 

  • Kaczmarska, I., Ehrman, J. M., & Bates, S. S. (2001). A review of auxospore structure, ontogeny, and diatom phylogeny. In A. Economou-Amilli (Ed.), Proceedings of the 16th International Diatom Symposium (pp. 153–168). Athens: University of Athens Press.

    Google Scholar 

  • Kaczmarska, I., Davidovich, N. A., & Ehrman, J. M. (2007). Sex cells and reproduction in the diatom Nitzschia longissima (Bacillariophyta): Discovery of siliceous scales in gamete cell walls and novel elements of the perizonium. Phycologia, 46(6), 726–737.

    Google Scholar 

  • Kaczmarska, I., Poulíčková, A., Sato, S., Edlund, M. B., Idei, M., Watanabe, T., & Mann, D. G. (2013). Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Research, 28(3), 263–294.

    Google Scholar 

  • Kaczmarska, I., Gray Jr., B. S., Ehrman, J. M., & Thaler, M. (2017). Sexual reproduction in plagiogrammacean diatoms: First insights into the early pennates. PLoS One, 12(8), e0181413.

    PubMed  PubMed Central  Google Scholar 

  • Kaczmarska, I., Ehrman, J. M., Davidovich, N. A., Davidovich, O. I., & Podunay, Y. A. (2018). Structure and development of the auxospore in Ardissonea crystallina (C. Agardh) Grunow demonstrates another way for a centric to look like a pennate. Protist, 169(4), 466–483.

    PubMed  Google Scholar 

  • Kaczmarska, I., Samanta, B., Ehrman, J. M., & Porcher, E. M. A. (2019). Auxosporulation in Chaetoceros acadianus sp. nov. (Bacillariophyceae), a new member of the section Compressa. European Journal of Phycology, 54(2), 206–221.

    CAS  Google Scholar 

  • Karsten, G. (1897). Untersuchungen über Diatomeen. II. Flora, 83, 33–53.

    Google Scholar 

  • Karsten, G. (1899). Die Diatomeen der Kieler Bucht. Wissenschaftliche Meeresuntersuchungen, Herausgegeben von der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere in Keil und der biologischen Anstalt auf Helgoland. Neue Folge V.B. 4 (pp. 17–207). Kiel: Lipsius & Tischer.

  • Karsten, G. (1928). Abteilung Bacillariophyta (Diatomeae). In A. Engler & K. Prantl (Eds.), Die naturlichen Pflanzenfamilien, Zweite Diatomeae (Bacillariophyta), Myxomycetes (Vol. 2, pp. 105–345). Leipzig: Wilhelm Engelmann.

    Google Scholar 

  • Kobayashi, A., Tanaka, J., Osada, K., & Nagumo, T. (2001). An auxospore of Arachnoidiscus ornatus. In A. Economou-Amilli (Ed.), Proceedings of the 16th International Diatom Symposium (pp. 197–204). Athens: University of Athens Press.

    Google Scholar 

  • Kociolek, J. P., & Williams, D. M. (1987). Unicell ontogeny and phylogeny: Examples from the diatoms. Cladistics, 3(3), 274–284.

    Google Scholar 

  • Kociolek, J. P., Williams, D. M., Stepanek, J., Liu, Q., Liu, Y., You, Q., Karthick, B., & Kulikovskiy, M. (2019). Rampant homoplasy and adaptive radiation in pennate diatoms. Plant Ecology and Evolution, 152(2), 131–141.

    Google Scholar 

  • Koester, J. A., Brawley, S. H., Karp-Boss, L., & Mann, D. G. (2007). Sexual reproduction in the marine centric diatom Ditylum brightwellii (Bacillariophyta). European Journal of Phycology, 42(4), 351–366.

    Google Scholar 

  • Kützing, F. T. (1844). Die Kieselschaligen Bacillarien oder Diatomeen. Nordhausen: W. Köhne.

    Google Scholar 

  • Kuwata, A., Yamada, K., Ichinomiya, M., Yoshikawa, S., Tragin, M., Valout, D., & Lopes dos Santos, A. (2018). Bolidophyceae, a sister picoplanktonic group of diatoms—A review. Frontiers in Marine Science, 5, 370.

    Google Scholar 

  • Li, C.-W., & Chiang, Y.-M. (1979). A euryhaline and polymorphic new diatom. Proteucylindrus taiwanensis gen. et sp. nov. British Phycological Journal, 14(4), 377–384.

    Google Scholar 

  • Li, C., Ashworth, M. P., Witkowski, A., Dąbek, P., Medlin, L. K., Kooistra, W. H. C. F., et al. (2015). New insights into Plagiogrammaceae (Bacillariophyta) based on multigene phylogenies and morphological characteristics with the description of a new genus and three new species. PLoS One, 10(10), e0139300.

    PubMed  PubMed Central  Google Scholar 

  • Liebisch, W. (1928). Amphitetras antediluviana Ehrbg., sowie einige Beiträge zum Bau und zur Entwicklung der Diatomeenzelle. Zeitschrift für Botanik, 20, 225–271.

    CAS  Google Scholar 

  • Mann, D. G. (1982). Structure, life history and systematics of Rhoicosphenia (Bacillariophyta). II. Auxospore formation and perizonium structure of Rh. curvata. Journal of Phycology, 18(2), 264–274.

    Google Scholar 

  • Mann, D. G. (1984). An ontogenetic approach to diatom systematics. In D. G. Mann (Ed.), Proceedings of the 7th International Diatom Symposium (pp. 113–144). Koenigstein: Koeltz.

    Google Scholar 

  • Mann, D. G. (1987). Sexual reproduction in Cymatopleura solea. Diatom Research, 2(1), 97–112.

    Google Scholar 

  • Mann, D. G. (1993). Pattern of sexual reproduction in diatoms. Hydrobiologia, 269/270(1), 11–20.

  • Mann, D. G. (1994). The origins of shape and form in diatoms: The interplay between morphogenetic studies and systematics. In D. S. Ingram & A. J. Hudson (Eds.), Shape and form in plants and fungi (pp. 17–38). San Diego: Academic Press.

    Google Scholar 

  • Mann, D. G., & Droop, S. J. M. (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia, 336, 19–32.

    Google Scholar 

  • Mann, D. G., & Marchant, H. (1989). The origins of the diatom and its life cycle. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae: Problems and perspectives (pp. 307–323). Oxford: Clarendon Press.

    Google Scholar 

  • Mann, D. G., & Poulíčková, A. (2009). Incunabula and perizonium of Neidium. Fottea, 9(2), 211–222.

    Google Scholar 

  • Mann, D. G., & Vanormelingen, P. (2013). An inordinate fondness? The number, distributions, and origins of diatom species. Journal of Eukaryotic Microbiology, 60(4), 414–420.

    Google Scholar 

  • Mann, D. G., Chepurnov, V. A., & Idei, M. (2003). Mating system, sexual reproduction and auxosporulation in the anomalous raphid diatom Eunotia (Bacillariophyta). Journal of Phycology, 39(6), 1067–1084.

    Google Scholar 

  • Mann, D. G., Sato, S., Rovira, L., & Trobajo, R. (2013). Paedogamy and auxosporulation in Nitzschia sect. Lanceolatae (Bacillariophyta). Phycologia, 52(2), 204–220.

    Google Scholar 

  • Manton, I., & von Stosch, H. A. (1966). Observations on the fine structure of the male gamete of the centric diatom Lithodesmium undulatum. Journal of the Royal Microscopy Society, 85(2), 119–134.

    Google Scholar 

  • Mather, L., Kaczmarska, I., & Ehrman, J. M. (2014). Silicification of auxospores in the araphid diatom Tabularia fasciculata (Bacillariophyta). European Journal of Protistology, 50(1), 1–10.

    PubMed  Google Scholar 

  • Medlin, L. K. (2014). Evolution of the diatoms: VIII. Re-examination of the SSU-rRNA gene using multiple outgroups and a cladistic analysis of valve features. Journal of Biodiversity, Bioprospecting and Development, 1(3), 1000129.

  • Medlin, L. K. (2016). Evolution of the diatoms: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 55(1), 79–103.

    CAS  Google Scholar 

  • Medlin, L. K., & Desdevises, Y. (2016). Phylogeny of “araphid” diatoms inferred from SSU and LSU rDNA, rbcL and psbA sequences. Vie et Milieu, 66(2), 129–154.

    Google Scholar 

  • Medlin, L. K., & Kaczmarska, I. (2004). Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43(3), 245–270.

    Google Scholar 

  • Medlin, L. K., Sato, S., Mann, D. G., & Kooistra, W. H. C. F. (2008). Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia, and Toxarium within the bipolar centric diatoms (Bacillariophyta, Mediophyceae), and cladistic analyses confirm that extremely elongated shape has arisen twice in the diatoms. Journal of Phycology, 44(5), 1340–1348.

    CAS  PubMed  Google Scholar 

  • Merezhkowsky, C. (1903). Les types des auxospores chez les diatomées et leur évolution. Annales des Sciences Naturelles Botanique, 17, 225–262.

    Google Scholar 

  • Meunier, A. (1910). Microplankton des Mers de Barents et de Kara. Duc d'Orléans. Campagne arctique de 1907. Brussels: Charles Bulens.

    Google Scholar 

  • Meyer, B., Wulf, M., & Håkansson, H. (2001). Phenotypic variation of life-cycle stages in clones of three similar Cyclotella species after induced auxospore production. Diatom Research, 16(2), 343–361.

    Google Scholar 

  • Migita, S. (1967a). Sexual reproduction of centric diatom Skeletonema costatum. Bulletin of the Japanese Society of Scientific Fisheries, 33(5), 392–398.

    Google Scholar 

  • Migita, S. (1967b). Morphological and ecological studies on sexual reproduction of marine centric diatoms. Information Bulletin Planktonology Japan, 14, 13–22.

    Google Scholar 

  • Mills, K. E. (2005). Autogamic sexual behavior and fine structure of sex cells of selected marine centric diatoms. BSc Honours thesis, Sackville: Mount Allison University.

  • Mills, K. E., & Kaczmarska, I. (2006). Autogamic reproductive behaviour and sex cell structure of Thalassiosira angulata. Botanica Marina, 49(5/6), 417–430.

    Google Scholar 

  • Mizuno, M. (1998). Sexual reproduction and auxospore formation of the marine monoraphid diatom Cocconeis pellucida. Diatom Research, 13(1), 103–112.

    Google Scholar 

  • Montresor, M., Vitale, L., D’Alelio, D., & Ferrante, I. (2016). Sex in marine planktonic diatoms: Insights and challenges. Perspectives in Phycology, 3(2), 61–75.

    Google Scholar 

  • Morales, E. A., Wetzel, C. E., Novais, M. H., Buczkó, K., Morais, M. M., & Ector, L. (2019). Morphological reconsideration of the araphid genus Pseudostaurosira (Bacillariophyceae), a revision of Gedaniella, Popovskayella and Serratifera, and a description of a new Nanofrustulum species. Plant Ecology and Evolution, 152(2), 262–284.

    Google Scholar 

  • Müller, O. (1889). Auxosporen von Terpsinoë musica Ehr. Plant Biology, 7, 181–183.

    Google Scholar 

  • Nakov, T., Beaulieu, J. M., & Alverson, A. J. (2018). Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (diatoms, Bacillariophyta). New Phytologist, 219(1), 462–473.

    Google Scholar 

  • Nanjappa, D., Kooistra, W. H. C. F., & Zingone, A. (2013). A reappraisal of the genus Leptocylindrus (Bacillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. Journal of Phycology, 49(5), 917–936.

    PubMed  Google Scholar 

  • Parks, M. B., Wickett, N. J., & Alverson, A. J. (2018). Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). Molecular Biology and Evolution, 35(1), 80–93.

  • Pavillard, J. (1921). Sur la reproduction du Chaetoceros eibenii Meunier. Comptes Rendus des Séances de l’Académie des Sciences, 172, 469–471.

    Google Scholar 

  • Pérez-Martínez, C., Cruz-Pizarro, L., & Sánchez-Castillo, P. (1992). Auxosporulation in Cyclotella ocellata (Bacillariophyceae) under natural and experimental conditions. Journal of Phycology, 28(5), 608–615.

    Google Scholar 

  • Persidsky, B. M. (1935). The sexual process in Melosira varians. Beiheft zum Botanischen Centralblatt, 53 (part A), 122–132.

  • Pfitzer, E. (1871). Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomaceen). Bonn: Adolph Marcus.

    Google Scholar 

  • Philippe, H., Brinkmann, H., Lavrov, D. V., Littlewood, D. T. J., Manuel, M., Wörheide, G., & Baurain, D. (2011). Resolving difficult phylogenetic questions: Why more sequences are not enough. PLoS Biology, 9(3), e1000602.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickett-Heaps, J., & Pickett-Heaps, J. D. (2004). Diatoms: life in glass houses. DVD video. Sunderland: Sinauer Associates.

    Google Scholar 

  • Pickett-Heaps, J. D., Schmid, A.-M. M., & Edgar, L. A. (1990). The cell biology of diatom valve formation. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (Vol. 7, pp. 1–169). Bristol: Biopress Limited.

    Google Scholar 

  • Podunay, Y., Davidovich, O. I., & Davidovich, N. A. (2014). Mating system and two types of gametogenesis in the freshwater diatom Ulnaria ulna (Bacillariophyta). Algologiya, 24(1), 3–19.

    Google Scholar 

  • Podunay, Y., Davidovich, N. A., Kulikovskiy, S., & Gusev, E. S. (2018). Features of sexual reproduction and mating system of Ulnaria acus (Bacillariophyta). Journal of Siberian Federal University – Biology, 11(1), 75–87.

    Google Scholar 

  • Poulíčková, A., & Mann, D. G. (2006). Sexual reproduction in Navicula cryptocephala (Bacillariophyceae). Journal of Phycology, 42(4), 872–886.

    Google Scholar 

  • Poulíčková, A., & Mann, D. G. (2019). Diatom sexual reproduction and life cycles. In J Seckbach & R. Gordon (Eds.), Diatoms: Fundamentals and applications (pp. 245–272). Hoboken: John Wiley & Sons.

  • Poulíčková, A., Mayama, S., Chepurnov, V. A., & Mann, D. G. (2007). Heterothallic auxosporulation, incunabula and perizonium in Pinnularia (Bacillariophyceae). European Journal of Phycology, 42(4), 367–390.

    Google Scholar 

  • Pritchard, A. (1861). A history of infusoria, including the Desmidiaceae and Diatomaceae, British and foreign, 4th edition. J. T. Arlidge, W. archer, J. Ralfs, W. C. Williamson, & A. Pritchard (Eds.). London: Whittaker & Company.

  • Reimann, B. (1960). Bildung, Bau und Zusammenhang der Bacillariophyceenschalen (elektronenmikroskopische Untersuchungen). Nova Hedwigia, 2, 349–373.

    Google Scholar 

  • Renzaglia, K. S., Duff, R. J., Nickrent, D. L, & Garbary, D. J. (2000). Vegetative and reproductive innovations of early land plants: Implications for a unified phylogeny. Philosophical Transactions of the Royal Society of London, Series B, 355(1398), 769–793.

  • Rieth, A. (1940). Die Auxosporenbildung bei Melosira arenaria (Moore). Planta, 31, 171–183.

    Google Scholar 

  • Rieth, A. (1953). Zur Auxosporenbildung bei Melosira nummuloides (Dillw.) C.A. Ag. Flora (Jena), 140, 205–208.

    Google Scholar 

  • Rines, J. E. B. (1999). Morphology and taxonomy of Chaetoceros contortus Schütt 1895, with preliminary observations on Chaetoceros compressus Lauder 1864 (subgenus Hyalochaete, section Compressa). Botanica Marina, 42(6), 539–551.

    Google Scholar 

  • Roemer, S. C., & Rosowski, J. R. (1980). Valve and band morphology of some freshwater diatoms. III. Pre- and post-auxospore frustules and the initial cell of Melosira roeseana. Journal of Phycology, 16(3), 399–411.

    Google Scholar 

  • Roshchin, A. M. (1986). Usloviya obrazovaniya auksospor vkul’ture i prirodnoj populyatsii diatomovoj vodorosli Licmophora ehrenbergii. VINITI, 13.02.861090-B86, 1–13.

  • Roshchin, A. M. (1994). Zhiznennye tsikly diatomovikh vodoroslej. Kiev: Naukova Dumka.

    Google Scholar 

  • Rothpletz, A. (1900). Uber einen neuen jurassischen Hornschwamm und die darin eingeschschlossenen Diatomeen. Deutsche Geologische Gesellschaft, 52, 152–160.

    Google Scholar 

  • Round, F. E. (1982). Auxospore structure, initial valves and the development of populations of Stephanodiscus in Farmoor reservoir. Annals of Botany, 49(4), 447–459.

    Google Scholar 

  • Round, F. E., & Crawford, R. M. (1981). The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London - Series B, 211(1183), 237–260.

    Google Scholar 

  • Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms: Biology and morphology of the genera. Cambridge: Cambridge University Press.

    Google Scholar 

  • Russo, M. T., Vitale, L., Entrambasaguas, L., Anestis, K., Fattorini, N., Romano, R., et al. (2018). MRP3 is a sex determining gene in the diatom Pseudo-nitzschia multistriata. Nature Communications, 9, 5050.

    PubMed  PubMed Central  Google Scholar 

  • Sabbe, K., Chepurnov, V. A., Mann, D. G., & Vyverman, W. (2004). Sexual behaviour, auxosporulation and chloroplast dynamics in a marine Amphora (Bacillariophyceae) studied in culture. Botanica Marina, 47(1), 53–63.

    Google Scholar 

  • Samanta, B., Kinney, M. E., Heffell, Q., Ehrman, J. M., & Kaczmarska, I. (2017). Gametogenesis and auxospore development in the bipolar centric diatom Brockmanniella brockmannii (family Cymatosiraceae). Protist, 168(5), 527–545.

    PubMed  Google Scholar 

  • Samanta, B., Heffell, Q., Ehrman, J. M., & Kaczmarska, I. (2018). Spermatogenesis in the bipolar centric diatom Plagiogrammopsis vanheurckii (Mediophyceae). Phycologia, 57(3), 354–359.

    Google Scholar 

  • Samanta, B., Kaczmarska, I., & Ehrman, J. M. (2020). Auxosporulation in Biddulphia tridens (Ehrenb.) Ehrenb. (Mediophyceae, Bacillariophyta). European Journal of Phycology, 55(3), 296–309.

    Google Scholar 

  • Sato, S., Nagumo, T., & Tanaka, J. (2004). Auxospore formation and the morphology of the initial cell of the marine araphid diatom Gephyria media (Bacillariophyceae). Journal of Phycology, 40(4), 684–691.

    Google Scholar 

  • Sato, S., Kuriyama, K., Tadano, T., & Medlin, L. K. (2008a). Auxospore fine structure in a marine araphid diatom Tabularia parva. Diatom Research, 23(2), 423–433.

    Google Scholar 

  • Sato, S., Mann, D. G., Matsumoto, S., & Medlin, L. K. (2008b). Pseudostriatella (Bacillariophyta): A description of a new araphid genus based on observations of frustule and auxospore structure and 18S rDNA phylogeny. Phycologia, 47(4), 371–391.

    CAS  Google Scholar 

  • Sato, S., Mann, D. G., Nagumo, T., Tanaka, J., Tadano, T., & Medlin, L. K. (2008c). Auxospore fine structure and variation in modes of cell size changes in Grammatophora marina (Bacillariophyta). Phycologia, 47(1), 12–27.

    Google Scholar 

  • Sato, S., Beakes, G., Idei, M., Nagumo, T., & Mann, D. G. (2011). Novel sex cells and evidence for sex pheromones in diatoms. PLoS One, 6(10), e26923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, A.-M. M. (1984). Tricornate spines in Thalassiosira eccentrica as a result of valve modelling. In D. G. Mann (Ed.), Proceedings of the 7th International Diatom Symposium (pp. 71–95). Koenigstein: Koeltz.

    Google Scholar 

  • Schmid, A.-M. M. (1994). Sexual reproduction in Coscinodiscus granii Gough in culture: A preliminary report. In D. Marino & M. Montresor (Eds.), Proceedings of the 13th International Diatom Symposium (pp. 139–169). Bristol: Biopress.

    Google Scholar 

  • Schmid, A.-M. M., & Crawford, R. M. (2001). Ellerbeckia arenaria (Bacillariophyceae): Formation of auxospores and initial cells. European Journal of Phycology, 36(4), 307–320.

    Google Scholar 

  • Schultz, M. E., & Trainor, F. R. (1968). Production of male gametes and auxospores in the centric diatoms Cyclotella meneghiniana and C. cryptica. Journal of Phycology, 4(2), 85–88.

    CAS  PubMed  Google Scholar 

  • Schultz, M. E., & Trainor, F. R. (1970). Production of male gametes and auxospores in a polymorphic clone of the centric diatom Cyclotella. Canadian Journal of Botany, 48(5), 947–951.

    Google Scholar 

  • Simonsen, R. (1972). Ideas for a more natural system of the centric diatoms. Nova Hedwigia. Beiheft, 39, 37–54.

    Google Scholar 

  • Simonsen, R. (1979). The diatom system: Ideas on phylogeny. Bacillaria, 2, 9–71.

    Google Scholar 

  • Song, H., & Bucheli, S. R. (2010). Comparison of phylogenetic signal between male genitalia and non-genital characters in insect systematics. Cladistics, 26(1), 1–13.

    Google Scholar 

  • Speijer, D., Lukeš, J., & Eliáš, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 8827–8834.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steele, R. L. (1963). Sexual reproduction in the marine centric diatom Isthmia nervosa Kützing. In MSc thesis. Seattle: University of Washington.

    Google Scholar 

  • Steele, R. L. (1967). Induction of sexuality in two marine centric diatoms: Ditylum brightwellii (West) Grunow and Stephanopyxis palmeriana (Grev.) Grunow. PhD thesis, Seattle: University of Washington.

  • Sunesen, I., & Sar, E. A. (2007). Diatomeas marinas de aguas costeras de la provincial de Buenos Aires (Argentina). III. Géneros potencialmente nocivos Asterionellopsis, Cerataulina, Ceratoneis y Leptocylindrus. Revista Chilena de Historia Natural, 80(4), 493–507.

    Google Scholar 

  • Theriot, E. C., Cannone, J. J., Gutell, R. R., & Alverson, A. J. (2009). The limits of nuclear encoded SSU rDNA for resolving the diatom phylogeny. European Journal of Phycology, 44(3), 277–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theriot, E. C., Ashworth, M. P., Ruck, E. C., Nakov, T., & Jansen, R. K. (2010). A preliminary multigene phylogeny of the diatoms (Bacillariophyta): Challenges for future research. Plant Ecology and Evolution, 143(3), 278–296.

    Google Scholar 

  • Theriot, E. C., Ruck, E. C., Ashworth, M. P., Nakov, T., & Jansen, R. K. (2011). Status of the pursuit of the diatom phylogeny: Are traditional views and new molecular paradigms really that different? In J. Seckbach & J. P. Kociolek (Eds.), The diatom world: Cellular origin, life in extreme habitats, and astrobiology (Vol. 19, pp. 123–142). Dordrecht: Springer.

    Google Scholar 

  • Theriot, E. C., Ashworth, M. P., Nakov, T., Ruck, E. C., & Jansen, R. K. (2015). Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Molecular Phylogenetics and Evolution, 89, 28–36.

    CAS  PubMed  Google Scholar 

  • Tschermak-Woess, E. (1973). Über die bisher vergeblich gesuchte Auxosporenbildung von Diatoma. Österreichische Botanische Zeitschrift, 121, 23–27.

    Google Scholar 

  • Van Heurck, H. (1885). Synopsis des Diatomées de Belgique. Anvers: Martin Brouwers & Company.

    Google Scholar 

  • von Stosch, H. A. (1950). Oogamy in a centric diatom. Nature, 165, 531–532.

    Google Scholar 

  • von Stosch, H. A. (1951). Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen I. Die Ausporenbildung von Melosira varians. Archiv für Mikrobiologie, 16, 101–135.

    Google Scholar 

  • von Stosch, H. A. (1954). Die Oogamie von Biddulphia mobiliensis und die bisher bekannten Auxosporenbildungen bei den Centrales. Huitième Congrès International de Botanique Paris 1953. Rapports et Communicatons parvenus avant le Congrès a la Section, 17, 58–68.

    Google Scholar 

  • von Stosch, H. A. (1956). Entwicklungsgeschichtliche Untersuchengen an zentrischen Diatomeen. II. Geschlechtszellenreifung, Befruchtung und Auxosporenbildung einiger grundbewohnender Biddulphiaceen der Nordsee. Archiv für Mikrobiologie, 23, 327–365.

    Google Scholar 

  • von Stosch, H. A. (1958). Kann die oogame Araphidee Rhabdonema adriaticum als Bindeglied zwischen den beiden großen Diatomeen gruppen angesehen werden? Berichte der Deutschen Botanischen Gesellschaft, 71, 241–249.

    Google Scholar 

  • von Stosch, H. A. (1962). Über das Perizonium der Diatomeen. Vorträge aus dem Gesamtgebiet der Botanik, 1, 43–52.

    Google Scholar 

  • von Stosch, H. A. (1977). Observations on Bellerochea and Streptotheca, including descriptions of three new planktonic diatom species. In: Proceedings of the Fourth Symposium on Recent and Fossil Marine Diatoms (Ed. by R. Simonsen). Nova Hedwigia, Beiheft, 54, 113–166.

  • von Stosch, H. A. (1982). On auxospore envelopes in diatoms. Bacillaria, 5, 127–156.

    Google Scholar 

  • von Stosch, H. A., & Drebes, G. (1964). Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen IV. Die Planktondiatomee Stephanopyxis turris – ihre Behandlung und Entwicklungsgeschichte. Helgoländer Wissenschaftliche Meeresuntersuchungen, 11, 209–257.

    Google Scholar 

  • von Stosch, H. A., & Kowallik, K. (1969). Der von L. Geitler aufgestellte Satz über die Notwendigkeit einer Mitose für jede Schalenbildung von Diatomeen. Beobachtungen über die Reichweite und Überlegungen zu seiner zellmechanischen Bedeutung. Österreichische Botanische Zeitschrift, 116, 454–474.

    Google Scholar 

  • von Stosch, H. A., Theil, G., & Kowallik, K. (1973). Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen V. Bau und Lebenszyklus von Chaetoceros didymum, mit Beobachtungen uber einige anderen Arten der Gattung. Helgoländer Wissenschafliche Meeresuntersuchungen, 25, 384–445.

    Google Scholar 

  • Wallich, G. C. (1858). On Triceratium and some allied forms, with figures of the same. Quarterly Journal of Microscopical Science, 6, 242–253.

    Google Scholar 

  • Webster, J., & Weber, R. W. S. (2007). Introduction to fungi (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Werner, D. (1971). Der Entwicklungscyclus mit Sexualphae bei marinen Diatomee Coscinodiscus asteromphalus. III. Differenzierung und Spermatogenese. Archiv für Mikrobiologie, 80, 134–146.

    CAS  Google Scholar 

  • West, T. (1860). Remarks on some Diatomaceae new or imperfectly described and a new desmid. Transactions of the Royal Microscopical Society, series 2 8: 147-153.

  • Williams, D. W. (2001). Comments on the structure of ‘post-auxospore’ valves of Fragilariforma virescens. In R. Jahn, J. P. Kociolek, A. Witkowski, & P. Compère (Eds.), Lange-Bertalot-Festschrift: Studies on diatoms. Dedicated to Prof. Dr. Dr. h.c. Horst Lange-Bertalot on the occasion of his 65th birthday (pp. 103–117). Ruggell: A.R.G Gantner.

    Google Scholar 

  • Williams, D. M., & Round, F. E. (1986). Revision of the genus Synedra Ehrenb. Diatom Research, 1(2), 313–339.

    Google Scholar 

  • Yamada, K., Katsura, H., Noël, M.-H., Ichinomiya, M., Kuwata, A., Sato, S., & Yoshikawa, S. (2019a). Ontogenetic analysis of siliceous cell wall formation in Triparma laevis f. inornata (Parmales, Stramenopiles). Journal of Phycology, 55(1), 196–203.

    PubMed  Google Scholar 

  • Yamada, K., Sato, S., Yamazaki, M., Yoshikawa, S., Kuwata, A., & Ichinomiya, M. (2019b). New clade of silicified bolidophytes that belong to Triparma (Bolidophyceae, Stramenopiles). Phycological Research, 68, 178–182. https://doi.org/10.1111/pre.12413.

    Article  Google Scholar 

  • Yendo, K., & Atkatsuka, K. (1910). Asexual mode of auxospore-formation of Arachnoidiscus ehrenbergii bail. The Botanical Magazine, 24, 47–50.

    Google Scholar 

Download references

Acknowledgments

This work was first presented as a plenary lecture at the 25th International Diatom Symposium, June 25–30, 2018 in Berlin, Germany.

Funding

We gratefully acknowledge financial support received from the Organizing Committee and the Berlin Botanic Garden and Botanical Museum. The work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and the Mount Allison University Marjorie Young Bell Faculty Fund (Sabbatical) Grant to IK.

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: Irena Kaczmarska; literature search, data analysis, drafting, and critically revising the work: Irena Kaczmarska, James Ehrman; microscopy and preparation of tables and figures: James Ehrman.

Corresponding author

Correspondence to Irena Kaczmarska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Both authors have given their consent to participate in this article.

Consent for publication

Both authors have given their consent for publication.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 1106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaczmarska, I., Ehrman, J.M. Enlarge or die! An auxospore perspective on diatom diversification. Org Divers Evol 21, 1–23 (2021). https://doi.org/10.1007/s13127-020-00476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00476-7

Keywords

Navigation