Skip to main content
Log in

Improved color texture recognition using multi-channel orthogonal moments and local binary pattern

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The texture is an essential characteristic of the image. So, recognition of texture is increasingly becoming a major topic in many image processing applications such as image retrieving, image classification, similarity, object recognition, and detection. The recognition of texture tries to allocate an unidentified image to one of the identified class of textures. This paper proposes a novel feature extraction technique for classification and recognition of color texture. The significant advantage of the introduced method is that it combines the extraction of local and global features of the color texture by using Local Binary Pattern (LBP) and multi-channel orthogonal radial substituted Chebyshev moments, respectively. Relevant features (local or global) provides discriminatory information that used to differentiate one object from another. Global features represent the image as a whole, while local features represent a specific part of the image. We performed experiments using challenging datasets: (Outex, ALOT) to test the efficacy of our image classification descriptors. The result of this approach has said that our descriptor is valid, competitive, discriminatory, and exceeds the current state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abd El-Aziz M, Hosny KM, Selim IM (2019) Galaxies Image Classification Using Artificial Bee Colony based on Orthogonal Gegenbauer Moments. Soft Computing 23(19):9573–9583

    Article  Google Scholar 

  2. Chandan Singh P (2012) Local and global features based image retrieval system using orthogonal radial moments. Opt Lasers Eng 50(5):655–667, ISSN 0143-8166. https://doi.org/10.1016/j.optlaseng.2011.11.012

    Article  Google Scholar 

  3. Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion Zernike moments and their invariants for color image analysis and object recognition, Signal Processing 92

  4. Di Ruberto C, Putzu L, Rodriguez G (2018) Fast and accurate computation of orthogonal moments for texture analysis. Pattern recognit 83:498–510, ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2018.06.012

    Article  Google Scholar 

  5. Gao Z, Xu C, Zhang H, Li S, de Albuquerque VHC (2020) Trustful internet of surveillance things based on deeply represented visual co-saliency detection. in IEEE Internet Things J 7(5):4092–4100. https://doi.org/10.1109/JIOT.2019.2963701

    Article  Google Scholar 

  6. Guo L-Q, Zhu M (2011) Quaternion Fourier–Mellin moments for color images. Pattern Recogn 44(2):187–195, ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2010.08.017

    Article  MATH  Google Scholar 

  7. Guo F, Ye S, Yang T, Wang X (2017) Robust circularly orthogonal moment based on Chebyshev rational function. Digital Signal Process 62:249–258, ISSN 1051-2004. https://doi.org/10.1016/j.dsp.2016.12.008

    Article  Google Scholar 

  8. Hamilton WR (1866) Elements of quaternions, Longmans Green

  9. Hosny KM (2007) Exact Legendre moment computation for gray level images. Pattern Recogn 40(12):3597–3605

    Article  Google Scholar 

  10. Hosny KM (2011) Accurate orthogonal circular moment invariants of gray-level images. J Comput Sci 7:715–722

    Article  Google Scholar 

  11. Hosny KM (2014) A New Set of Gegenbauer Moment Invariants for Pattern Recognition Application. Arabian Journal for Science and Engineering 39:7097–7107

    Article  Google Scholar 

  12. Hosny KM, Darwish MM (2017) Invariant image watermarking using accurate polar harmonic transforms. Comput Electr Eng 62:429–447

    Article  Google Scholar 

  13. Hosny K, Darwish M (2018) New set of quaternion moments for color images representation and recognition. J Math Imaging Vis 60:717–736

    Article  MathSciNet  Google Scholar 

  14. Hosny KM, Darwish MM (2019) Invariant Color Images Representation Using Accurate Quaternion Legendre-Fourier Moments. Pattern Analysis and Applications 22(3):1105–1122

    Article  MathSciNet  Google Scholar 

  15. Hosny KM, Darwish MM (2019) New set of Multi-Channel orthogonal moments for color image representation and recognition. Pattern Recogn 78:376–392

    Google Scholar 

  16. Hosny KM, Shouman MA, Abdel HM (2011) Salam,"fast computation of orthogonal Fourier–Mellin moments in polar coordinates". J Real-Time Image Proc 6:73–80. https://doi.org/10.1007/s11554-009-0135-z

    Article  Google Scholar 

  17. Hosny KM, Hamza HM, Lashin NA (2018) Copy-move forgery detection of duplicated objects using accurate PCET moments and morphological operators. Imaging Sci J 66(6):330–345

    Article  Google Scholar 

  18. Hu M-K (1962) Visual pattern recognition by moment invariants, IRE Trans Inf Theory, 8

  19. Karakasis EG, Amanatiadis A, Gasteratos A, Chatzichristofis SA (2015) Image moment invariants as local features for content-based image retrieval using the bag- of-visual-words model. Pattern Recogn Lett 55:22–27, ISSN 0167-8655. https://doi.org/10.1016/j.patrec.2015.01.005

    Article  Google Scholar 

  20. Khan S, Muhammad K, Mumtaz S, Baik SW, de Albuquerque VHC (2019) Energy-efficient deep CNN for smoke detection in foggy IoT environment. in IEEE Internet Things J 6(6):9237–9245. https://doi.org/10.1109/JIOT.2019.2896120

    Article  Google Scholar 

  21. Liu C, Huang X, Wang M (2012) Fast computation of Zernike moments in polar coordinates. IET Image Process 6(7):996–1004. https://doi.org/10.1049/iet-ipr.2011.0348

    Article  MathSciNet  Google Scholar 

  22. Maenpaa T, Pietikainen M, Viertola J (2002) Separating color and pattern information for color texture discrimination, Object recognition supported by user interaction for service robots, Quebec City, Quebec, Canada, pp. 668–671, vol.1. https://doi.org/10.1109/ICPR.2002.1044840

  23. Muhammad K, Hussain T, Tanveer M, Sannino G, de Albuquerque VHC (2020) Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks, in IEEE Internet of Things Journal, 7

  24. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59, ISSN 0031-3203. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  25. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  26. Padierna LC, Carpio M, Rojas-Domínguez A, Puga H, Fraire H (2018) A novel formulation of orthogonal polynomial kernel functions for SVM classifiers: The Gegenbauer family, Pattern Recognition, 84, 211–225, ISSN 0031–3203. https://doi.org/10.1016/j.patcog.2018.07.010

  27. Pietikainen M, Maenpaa T, Viertola J (2002) Color texture classification with color histograms and local binary patterns, Workshop on Texture Analysis in Machine Vision

  28. Rizzini DL (2018) Angular Radon spectrum for rotation estimation. Pattern Recognition 84:182–196, ISSN 0031–3203. https://doi.org/10.1016/j.patcog.2018.07.017

    Article  Google Scholar 

  29. Singh C, Singh J (2018) Quaternion generalized Chebyshev-Fourier and pseudo-Jacobi-Fourier moments. Opt Laser Technol 106:234–250

    Article  Google Scholar 

  30. Singh C, Singh J (2018) Multi-channel versus quaternion orthogonal rotation invariant moments for color image representation. Digital Signal Process 78:376–392

    Article  MathSciNet  Google Scholar 

  31. Singh C, Walia E, Upneja R (2013) Accurate calculation of Zernike moments. Inf Sci 233:255–275, ISSN 0020-0255. https://doi.org/10.1016/j.ins.2013.01.012

    Article  MathSciNet  MATH  Google Scholar 

  32. Subbiah Bharathi V, Ganesan L (2008) Orthogonal moments-based texture analysis of CT liver images, Pattern Recognition Letters, 29, 13

  33. Suk T, Flusser J (2009) Affine moment invariants of color images, The 13th International Conference on Computer Analysis of Images and Patterns, Lecture Notes Computer Science, Pages 334–341

  34. Teague MR (1980) Image analysis via the general theory of moments, Journal of the Optical Society of America, 70

  35. Tsougenis ED, Papakostas GA, Koulouriotis DE, Tourassis VD (2012) Performance evaluation of moment-based watermarking methods: a review. J Syst Softw 85(8):1864–1884. https://doi.org/10.1016/j.jss.2012.02.045

    Article  Google Scholar 

  36. Tuceryan M (1994) Moment-based texture segmentation, Pattern Recognit lett, 15, 7

  37. Vijaya Lakshmi B, Bharathi VS (2016) Classification of CT Liver Images Using Local Binary Pattern with Legendre Moments. Current Sci 110:687–691

    Article  Google Scholar 

  38. Wang Y, Zhao Y, Chen Y (2014) Texture classification using rotation invariant models on integrated local binary pattern and Zernike moments, EURASIP J. Adv. Signal Process

  39. Wang X-Y, Li W-Y, Yang H-Y, Wang P, Li Y-W (2015) Quaternion polar complex exponential transform for invariant color image description. Appl Math Comput 256:951–967

    MathSciNet  MATH  Google Scholar 

  40. Wang XY, Li WY, Yang HY, Niu PP, Li YW (2015) Invariant quaternion radial harmonic Fourier moments for color image retrieval. Opt Laser Technol 66:78–88

    Article  Google Scholar 

  41. Yang J, Liang Z, Tang YY (2019) Mellin polar coordinate moment and its affine invariance. Pattern Recognit 85:37–49, ISSN 0031-3203. https://doi.org/10.1016/j.patcog.2018.07.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid M. Hosny.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosny, K.M., Magdy, T. & Lashin, N.A. Improved color texture recognition using multi-channel orthogonal moments and local binary pattern. Multimed Tools Appl 80, 13179–13194 (2021). https://doi.org/10.1007/s11042-020-10444-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10444-0

Keywords

Navigation