Skip to main content

Advertisement

Log in

One mutation, three phenotypes: novel metabolic insights on MELAS, MIDD and myopathy caused by the m.3243A > G mutation

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The m.3243A > G mitochondrial DNA mutation is one of the most common mitochondrial disease-causing mutations, with a carrier rate as high as 1:400. This point mutation affects the MT-TL1 gene, ultimately affecting the oxidative phosphorylation system and the cell’s energy production. Strikingly, the m.3243A > G mutation is associated with different phenotypes, including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD) and myopathy.

Objectives

We investigated urine metabolomes of MELAS, MIDD and myopathy patients in order to identify affected metabolic pathways and possible treatment options.

Methods

A multiplatform metabolomics approach was used to comprehensively analyze the metabolome and compare metabolic profiles of different phenotypes caused by the m.3243A > G mutation. Our analytical array consisted of NMR spectroscopy, LC-MS/MS and GC-TOF-MS.

Results

The investigation revealed phenotypic specific metabolic perturbations, as well as metabolic similarities between the different phenotypes. We show that glucose metabolism is highly disturbed in the MIDD phenotype, but not in MELAS or myopathy, remodeled fatty acid oxidation is characteristic of the MELAS patients, while one-carbon metabolism is strongly modified in both MELAS and MIDD, but not in the myopathy group. Lastly we identified increased creatine in the urine of the myopathy patients, but not in MELAS or MIDD.

Conclusion

We conclude by giving novel insight on the phenotypes of the m.3243A > G mutation from a metabolomics point of view. Directives are also given for future investigations that could lead to better treatment options for patients suffering from this debilitating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-HG:

2-Hydroxyglutaric acid

ADP:

Adenosine diphosphate

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

AUC:

Area under the curve

BCAA:

Branched-chain amino acid

Complex V:

ATP synthase

FAD:

Oxidized flavin adenine dinucleotide

FADH2 :

Reduced flavin adenine dinucleotide

FAS:

Fatty acids synthesis

GC–TOF–MS:

Gas chromatography time-of-flight mass spectrometry

KSS:

Kearns–Sayre syndrome

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

LS:

Leigh syndrome

MCFA:

Medium chain fatty acids

MD:

Mitochondrial disease

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

MERRF:

Myoclonus epilepsy with ragged red fibers

MIDD:

Maternally inherited diabetes and deafness

MS:

Mass spectrometry

mtDNA:

Mitochondrial DNA

mTOR:

mammalian target of rapamycin

MT-TL1:

Mitochondria-encoded tRNA leucine 1

NAD+ :

Oxidized nicotine amide adenine dinucleotide

NADH:

Reduced nicotine amide adenine dinucleotide

NMR:

Proton nuclear magnetic resonance spectroscopy

OXPHOS:

Oxidative phosphorylation

PCA:

Principal component analysis

PCr:

Phosphocreatine

PEO:

progressive external ophthalmoplegia

ROC:

Receiver operating characteristic

SCFA:

Short chain fatty acids

SI:

Supplementary information

TCA:

Tricarboxylic acid

References

  • Baertling, F., Rodenburg, R. J., Schaper, J., Smeitink, J. A., Koopman, W. J., Mayatepek, E., et al. (2014). A guide to diagnosis and treatment of Leigh syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 85(3), 257–265.

    Article  PubMed  Google Scholar 

  • Bao, X. R., Ong, S. E., Goldberger, O., Peng, J., Sharma, R., Thompson, D. A., et al. (2016). Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife., 5, e10575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brière, J., Chrétien, D., Bénit, P., & Rustin, P.  (2004). Respiratory chain defects: What do we know for sure about their consequences in vivo? Biochimica Biophysica Acta (BBA). 1659 (2), 172–177.

    Article  Google Scholar 

  • Buzkova, J., Nikkanen, J., Ahola, S., Hakonen, A. H., Sevastianova, K., Yki-Järvinen, H. T., et al. (2018). Metabolomes of mitochondrial diseases and inclusion body myositis patients: Treatment targets and biomarkers. EMBO Molecular Medicine, 10, e9091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbonneau, M., Gagné, M., Lalonde, L., Germain, M. E., Motorina, M. A., Guiot, A., et al. (2016). The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nature Communications, 7, 12700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, R. M., Fu, X., Pai, M. Y., Vergnes, L., Hwang, H., Deng, G., et al. (2014). The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature., 510(7505), 397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hattab, A. W., Adesina, A. M., Jones, J., & Scaglia, F. (2015). MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Molecular Genetics and Metabolism, 116(1), 4–12.

    Article  CAS  PubMed  Google Scholar 

  • Esterhuizen, K., Lindeque, J. Z., Mason, S., van der Westhuizen, F. H., Suomalainen, A., Hakonen, A. H., et al. (2019). A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion., 45, 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Esterhuizen, K., van der Westhuizen, F. H., & Louw, R. (2017). Metabolomics of mitochondrial disease. Mitochondrion., 35, 97–110.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Finsterer, J. (2007). Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu (UUR) mutation. Acta Neurologica Scandinavica, 116(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Chin, R. M., Vergnes, L., Hwang, H., Deng, G., Xing, Y., et al. (2015). 2-Hydroxyglutarate inhibits ATP synthase and mTOR signalling. Cell Metabolism, 22(3), 508–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto, Y., Nonaka, I., & Horai, S. (1990). A mutation in the tRNA (Leu (UUR)) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature., 348(6302), 651–653.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A. M., Vilasi, A., Garcia-Perez, I., Lapsley, M., Alston, C. L., Pitceathly, R. D., et al. (2015). The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney International, 87(3), 610–622.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Luis, C., García-Morán, E., Rubio-Sanz, J., & Fernández-Avilés, F. (2007). Kearns- Sayre syndrome: Recurrent syncope and atrial flutter. Revista Española de Cardiología (English Edition)., 60(1), 89–90.

    Article  Google Scholar 

  • Hiltunen, J. K., Schonauer, M. S., Autio, K. J., Mittelmeier, T. M., Kastaniotis, A. J., & Dieckmann, C. L. (2009). Mitochondrial fatty acid synthesis type II: More than just fatty acids. The Journal of Biological Chemistry, 284(14), 9011–9015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.

    Google Scholar 

  • Johnson, S. C., Yanos, M. E., Kayser, E. B., Quintana, A., Sangesland, M., Castanza, A., et al. (2013). mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science, 342(6165), 1524–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kami, K., Fujita, Y., Igarashi, S., Koike, S., Sugawara, S., Ikeda, S., et al. (2012). Metabolomic profiling rationalized pyruvate efficacy in cybrid cells harboring MELAS mitochondrial DNA mutations. Mitochondrion., 12(6), 644–653.

    Article  CAS  PubMed  Google Scholar 

  • Kassel, D., Martin, M., Schall, W., & Sweeley, C. (1986). Urinary metabolites of L-threonine in type 1 diabetes determined by combined gas chromatography/chemical ionization mass spectrometry. Biological Mass Spectrometry, 13(10), 535–540.

    Article  CAS  Google Scholar 

  • Kaufmann, P., Engelstad, K., Wei, Y., Kulikova, R., Oskoui, M., Battista, V., et al. (2009). Protean phenotypic features of the A3243G mitochondrial DNA mutation. Archives of Neurology, 66(1), 85–91.

    Article  PubMed  Google Scholar 

  • Kennedy, A. D., Miller, M. J., Beebe, K., Wulff, J. E., Evans, A. M., Miller, L. A. D., et al. (2016). Metabolomic profiling of human urine as a screen for multiple inborn errors of metabolism. Genetic Testing and Molecular Biomarkers, 20(9), 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khamis, M. M., Holt, T., Awad, H., El-Aneed, A., & Adamko, D. J. (2018). Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD. Metabolomics, 14(9), 115.

    Article  PubMed  Google Scholar 

  • Khan, N. A., Auranen, M., Paetau, I., Pirinen, E., Euro, L., Forsström, S., et al. (2014). Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Molecular Medicine., 6(6), 721–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzoni, P. J., Scola, R. H., Kay, C. S. K., Silvado, C. E. S., & Werneck, L. C. (2014). When should MERRF (myoclonus epilepsy associated with ragged-red fibers) be the diagnosis? Arquivos de Neuro-Psiquiatria, 72(10), 803–811.

    Article  PubMed  Google Scholar 

  • Lorenzoni, P. J., Werneck, L. C., Kay, C. S. K., Silvado, C. E. S., & Scola, R. H. (2015). When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis? Arquivos de Neuro-Psiquiatria., 73(11), 959–967.

    Article  PubMed  Google Scholar 

  • Löwik, M. M., Hol, F. A., Steenbergen, E. J., Wetzels, J. F. M., & van den Heuvel, L. P. W. J. (2005). Mitochondrial tRNALeu(UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. Nephrology Dialysis Transplantation., 20(2), 336–341.

    Article  Google Scholar 

  • Manwaring, N., Jones, M. M., Wang, J. J., Rochtchina, E., Howard, C., Mitchell, P., et al. (2007). Population prevalence of the MELAS A3243G mutation. Mitochondrion, 7(3), 230–233.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, D. D., & Powers, R. (2017). Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Progress in Nuclear Magnetic Resonance Spectroscopy, 100, 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin, M. J., & Sainani, K. L. (2014). Bonferroni, Holm, and Hochberg corrections: Fun names, serious changes to p values. Physical Medicine and Rehabilitation, 6(6), 544–546.

    Google Scholar 

  • Mignarri, A., Cenciarelli, S., Da Pozzo, P., Cardaioli, E., Malandrini, A., Federico, A., et al. (2015). Mitochondrial recessive ataxia syndrome: A neurological rarity not to be missed. Journal of the Neurological Sciences, 349(1–2), 254–255.

    Article  CAS  PubMed  Google Scholar 

  • Muoio, D. M., & Newgard, C. B. (2008). Fatty acid oxidation and insulin action: When less is more. Diabetes, 57(6), 1455–1456.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, R., Turnbull, D., Walker, M., & Hattersley, A. (2008). Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A > G mitochondrial point mutation. Diabetic Medicine, 25(4), 383–399.

    Article  CAS  PubMed  Google Scholar 

  • Naviaux, R. K. (2014). Metabolic features of the cell danger response. Mitochondrion, 16, 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Nikkanen, J., Forsström, S., Euro, L., Paetau, I., Kohnz, R. A., Wang, L., et al. (2016). Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metabolism, 23(4), 635–648.

    Article  CAS  PubMed  Google Scholar 

  • Padmalayam, I., Hasham, S., Saxena, U., & Pillarisetti, S. (2009). Lipoic acid synthase (LASY): A novel role in inflammation, mitochondrial function, and insulin resistance. Diabetes, 58(3), 600–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. Y., Kim, S. H., & Lee, Y. (2017). Molecular diagnosis of myoclonus epilepsy associated with ragged-red fibers syndrome in the absence of ragged red fibers. Frontiers in Neurology, 8, 520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto, M., & Moraes, C. T. (2014). Mitochondrial genome changes and neurodegenerative diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(8), 1198–1207.

    Article  CAS  Google Scholar 

  • Pisters, P. W., Cersosimo, E., Rogatko, A., & Brennan, M. F. (1992). Insulin action on glucose and branched-chain amino acid metabolism in cancer cachexia: Differential effects of insulin. Surgery, 111(3), 301–310.

    CAS  PubMed  Google Scholar 

  • Reinecke, C. J., Koekemoer, G., van der Westhuizen, F. H., Louw, R., Lindeque, J. Z., Mienie, L. J., et al. (2012). Metabolomics of urinary organic acids in respiratory chain deficiencies in children. Metabolomics., 8(2), 264–283.

    Article  CAS  Google Scholar 

  • Rosen Vollmar, A. K., Rattray, N. J. W., Cai, Y., Santos-Neto, A. J., Deziel, N. C., Jukic, A. M. Z., & Johnson, C. H. (2019). Normalizing untargeted periconceptional urinary metabolomics data: A comparison of approaches. Metabolites, 9(10), 198.

    Article  PubMed Central  Google Scholar 

  • Rowland, L. P. (1993). Progressive external ophthalmoplegia. Handbook of Clinical Neurology, 22, 177–202.

    Google Scholar 

  • Sage-Schwaede, A., Engelstad, K., Salazar, R., Curcio, A., Khandji, A., Garvin, J. H. Jr., et al. (2019). Exploring mTOR inhibition as treatment for mitochondrial disease. Annals of Clinical and Translational Neurology, 6(9), 1877–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santa, K. M. (2010). Treatment options for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 30(11), 1179–1196.

    Article  CAS  Google Scholar 

  • Scaglia, F., & Northrop, J. L. (2006). The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: A review of treatment options. CNS Drugs., 20(6), 443–464.

    Article  CAS  PubMed  Google Scholar 

  • Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., et al. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science & Technology, 48, 2097–2098.

    Article  CAS  Google Scholar 

  • Smeitink, J. A., Zeviani, M., Turnbull, D. M., & Jacobs, H. T. (2006). Mitochondrial medicine: A metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metabolism, 3(1), 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Smuts, I., van der Westhuizen, F. H., Louw, R., Mienie, L. J., Engelke, U. F., Wevers, R. A., et al. (2013). Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics., 9(2), 379–391.

    Article  CAS  Google Scholar 

  • Xia, J., & Wishart, D. S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55, 10–14.

    Article  PubMed  Google Scholar 

  • Yang, J., Chen, T., Sun, L., Zhao, Z., Qi, X., Zhou, K., et al. (2013) Potential metabolite markers of schizophrenia. Molecular Psychiatry, 18, 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Yi, X., & Maeda, N. (2005). Endogenous production of lipoic acid is essential for mouse development. Molecular and Cellular Biology, 25(18), 8387–8392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Modern analytical techniques in metabolomics analysis. The Analyst, 137(2), 293–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. L.J. Mienie from the North-West University, Potchefstroom, South Africa, for valuable help with the interpretation of the metabolic data. The research was supported by a grant from the Technology Innovation Agency (TIA, Grant Number Metabol. 01), South Africa. The research facilities were provided by the National Metabolomics Platform, North-West University, Potchefstroom Campus, Potchefstroom, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

RL, MJ, ZL, FVDW and JS planned and oversaw the study. KE, ZL and SM performed all analytical work. Data mining was performed by RL, ZL, SM and KE. The manuscript was written by KE, RL and ZL, assisted by all the authors.

Corresponding author

Correspondence to Roan Louw.

Ethics declarations

Conflict of interest

The authors declare no competing interests. Jan Smeitink is the founding CEO of Khondrion.

Ethical approval

The study complied with all Institutional guidelines and terms of the Declaration of Helsinki of 1975 (as revised in 2013) for investigation of human participants. Ethical approval was obtained from the Health Research Ethics Committee (HREC) of the North-West University, South Africa (NWU-00170-13-S1) and the Ethics Committee of the Nijmegen-Arnhem region of the Netherlands (2010/183; NL32683.091.10). All the patients, as well as the controls, provided written informed consent for their urine samples to be used for these research purposes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esterhuizen, K., Lindeque, J.Z., Mason, S. et al. One mutation, three phenotypes: novel metabolic insights on MELAS, MIDD and myopathy caused by the m.3243A > G mutation. Metabolomics 17, 10 (2021). https://doi.org/10.1007/s11306-020-01769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01769-w

Keywords

Navigation