Skip to main content

Advertisement

Log in

Structural insights of sulfonamide-based NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

NLRP3 inflammasome has recently attracted much attention as a potentially druggable target to develop potential therapeutics for inflammatory and neurodegenerative disorders. In our continuing studies, structure–activity relationship studies were conducted based on a newly identified NLRP3 inhibitor, YQ-II-128, from our laboratory to understand the structural features and improve aqueous solubility. The results revealed that steric interactions at the propoxyl and amide domain of YQ-II-128 are important for the observed inhibitory potency on the NLRP3 inflammasome. The results also identified the amide domain to incorporate polar moieties to improve solubility and potentially pharmacokinetic properties. As a result, analog 10 was identified as a selective NLRP3 inhibitor with comparable potency while significantly improved aqueous solubility. Collectively, these findings strongly encourage further optmization of 10 to develop analogs with improved pharmacokinetic properties as potential NLRP3-targted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

Data accessibility

The datasets supporting this article have been included and could be found in the manuscript.

References

  1. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26. https://doi.org/10.1016/S1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  2. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  Google Scholar 

  3. Malik A, Kanneganti T-D. Inflammasome activation and assembly at a glance. J Cell Sci. 2017;130:3955–63. https://doi.org/10.1242/jcs.207365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  5. Shao B-Z, Xu Z-Q, Han B-Z, Su D-F, Liu C. Nlrp3 inflammasome and its inhibitors: a review. Front Pharmacol. 2015;6:262. https://doi.org/10.3389/fphar.2015.00262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelly N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  Google Scholar 

  7. Rowczenio DM, Gomes SM, Aróstegui JI, Mensa-Vilaro A, Omoyinmi E, Trojer H, et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol. 2017;8:1410. https://doi.org/10.3389/fimmu.2017.01410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29:301–5. https://doi.org/10.1038/ng756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 2011;32:373–9. https://doi.org/10.1016/j.it.2011.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi AJS, Ryter SW. Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol Cells. 2014;37:441–8. https://doi.org/10.14348/molcells.2014.0104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Couturier J, Stancu IC, Schakman O, Pierrot N, Huaux F, Kienlen-Campard P, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer’s disease. J Neuroinflammation. 2016;13:20. https://doi.org/10.1186/s12974-016-0477-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Freeman LC, Ting JP-Y. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136:29–38. https://doi.org/10.1111/jnc.13217

    Article  CAS  PubMed  Google Scholar 

  13. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. Nlrp3 is activated in Alzheimer’s disease and contributs to pathology in App/Ps1 Mice. Nature. 2013;493:674–8. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  14. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature. 2017;552:355–61. https://doi.org/10.1038/nature25158

    Article  CAS  PubMed  Google Scholar 

  15. Lazaridis L-D, Pistiki A, Giamarellos-Bourboulis EJ, Georgitsi M, Damoraki G, Polymeros D, et al. Activation of NLRP3 inflammasome in inflammatory bowel disease: differences between Crohn’s disease and ulcerative colitis. Dig Dis Sci. 2017;62:2348–56. https://doi.org/10.1007/s10620-017-4609-8

    Article  CAS  PubMed  Google Scholar 

  16. Feist E, Burmester GR. Canakinumab for treatment of cryopyrin-associated periodic syndrome. Expert Opin Biol Ther. 2010;10:1631–6. https://doi.org/10.1517/14712598.2010.530653

    Article  CAS  PubMed  Google Scholar 

  17. Kelly A, Ramanan AV. A case of macrophage activation syndrome successfully treated with anakinra. Nat Clin Pract Rheumatol. 2008;4:615–20. https://doi.org/10.1038/ncprheum0919

    Article  CAS  PubMed  Google Scholar 

  18. Gillespie J, Mathews R, McDermott MF. Rilonacept in the management of cryopyrin-associated periodic syndromes (CAPS). J Inflamm Res. 2010;3:1–8. https://doi.org/10.2147/JIR.S8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, Xu A, Lv J, Zhang Q, Ran Y, Wei C, et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem. 2020;185:111822. https://doi.org/10.1016/j.ejmech.2019.111822

    Article  CAS  PubMed  Google Scholar 

  20. Coll RC, Robertson AAB, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55. https://doi.org/10.1038/nm.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang H, Hongbin H, Chen Y, Huang W, Cheng J, Ye J, et al. Identification of selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214:3219–38. https://doi.org/10.1084/jem.20171419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang S, Yang H, Yu L, Jin J, Qian L, Zhao H, et al. Oridonin attenuates Aβ1-42-indicued neuroinflammation and inhibits NF-κB pathway. PLoS ONE. 2014;9:e104745. https://doi.org/10.1371/journal.pone.0104745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med. 2018;10:e8689. https://doi.org/10.15252/emmm.201708689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He Y, Varadarajan S, Muñoz-Planillo R, Burberry A, Nakamura Y, Núñez G. 3,4-Methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem. 2014;289:1142–50. https://doi.org/10.1074/jbc.M113.515080

    Article  CAS  PubMed  Google Scholar 

  25. Marchetti C, Swartzwelter B, Gamboni F, Neff CP, Richter K, Azam T, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci. 2018;115:E1530–39. https://doi.org/10.1073/pnas.1716095115

    Article  CAS  PubMed  Google Scholar 

  26. Cocco M, Pellegrini C, Martínez-Banaclocha H, Giorgis M, Marini E, Costale A, et al. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J Med Chem. 2017;60:3656–71. https://doi.org/10.1021/acs.jmedchem.6b01624

    Article  CAS  PubMed  Google Scholar 

  27. Fulp J, He L, Toldo S, Jiang Y, Boice A, Guo C, et al. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J Med Chem. 2018;61:5412–23. https://doi.org/10.1021/acs.jmedchem.8b00733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perera AP, Fernando R, Shinde T, Gundamaraju R, Southam B, Sohal SS, et al. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep. 2018;8:8618. https://doi.org/10.1038/s41598-018-26775-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xia S, Zhang X, Li C, Guan H. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling. Saudi Pharm J. 2017;25:638–43. https://doi.org/10.1016/j.jsps.2017.04.037

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sato S, Takahashi S, Asamoto M, Naiki T, Naiki-Ito A, Asai K, et al. Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro. Prostate. 2009;70:229–38. https://doi.org/10.1002/pros.21056

    Article  CAS  Google Scholar 

  31. Marchetti C, Swartzwelter B, Koenders MI, Azam T, Tengesdal IW, Powers N, et al. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther. 2018;20:169. https://doi.org/10.1186/s13075-018-1664-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin J, Zhao F, Chojnacki J, Fulp J, Klein WL, Zhang S, et al. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2018;55:1977–87. https://doi.org/10.1007/s12035-017-0467-9

    Article  CAS  PubMed  Google Scholar 

  33. Jiang Y, He L, Green J, Blevins H, Guo C, Harsiddhbhai S, et al. Discovery of second-generation NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J Med Chem. 2019;62:9718–31. https://doi.org/10.1021/acs.jmedchem.9b01155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brand S, Norcross NR, Thompson S, Harrison JR, Smith VC, Robinson DA, et al. Lead optimization of a pyrazole sulfonamide series of Trypanosoma brucei N-myristoyltransferase inhibitors: identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human African trypanosomiasis. J Med Chem. 2014;57:9855–69. https://doi.org/10.1021/jm500809c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the NIA of the NIH under award number R01AG058673 (SZ), Alzheimer’s Drug Discovery Foundation 20150601 (SZ).

Author information

Authors and Affiliations

Authors

Contributions

YX and MS performed organic synthesis and biological characterization. HB tested the solubility. SZ designed the research. SZ and YX wrote the manuscript.

Corresponding author

Correspondence to Shijun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Scipioni, M., Blevins, H. et al. Structural insights of sulfonamide-based NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. Med Chem Res 30, 473–482 (2021). https://doi.org/10.1007/s00044-020-02692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02692-4

Keywords

Navigation