Skip to main content
Log in

Doubly Reflected Backward Stochastic Differential Equations in the Predictable Setting

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we introduce a specific kind of doubly reflected backward stochastic differential equations (in short DRBSDEs), defined on probability spaces equipped with general filtration that is essentially non quasi-left continuous, where the barriers are assumed to be predictable processes. We call these equations predictable DRBSDEs. Under a general type of Mokobodzki’s condition, we show the existence of the solution (in consideration of the driver’s nature) through a Picard iteration method and a Banach fixed point theorem. By using an appropriate generalization of Itô’s formula due to Gal’chouk and Lenglart we provide a suitable a priori estimates which immediately implies the uniqueness of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Note that this barrier is equal to \(E(A'_T-A'_t + C'_{T^-} - C'_{t^-} \vert {\mathscr {F}}_{t^-}) - {\tilde{\xi }}^{g,p}_t\) if \(t<T\), and 0 if \(t=T\).

  2. Note that this barrier is equal to \(E(A_T-A_t + C_{T^-} - C_{t^-} \vert {\mathscr {F}}_{t^-}) - {\tilde{\zeta }}^{g,p}_t\) if \(t<T\), and 0 if \(t=T\).

  3. We omit the exponent g in the notation for \({\mathbf {J}}^{p,n}\) and \(\bar{{\mathbf {J}}}^{p,n}\) for sake of simplicity.

References

  1. Bismut, J.M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Apl. 44, 384–404 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bouhadou, S., Ouknine, Y.: Non linear optimal stopping problem (2018). arXiv:1811.00695

  3. Crépey, S., Matoussi, A.: Reflected and doubly reflected BSDEs with jumps. Ann. App. Probab. 18(5), 2041–2069 (2008)

    MATH  Google Scholar 

  4. Cvitanić, J., Karatzas, I.: Backward stochastic differential equations with reflection and Dynkin games. Ann. Probab. 24, 2024–2056 (1996)

    Article  MathSciNet  Google Scholar 

  5. Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel, Chap. I–IV. Nouvelle édition. Hermann, Paris (1975)

    MATH  Google Scholar 

  6. Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel, Théorie des Martingales, Chap. V–VIII. Nouvelle édition. Hermann, Paris (1980)

    MATH  Google Scholar 

  7. Dumitrescu, R., Quenez, M.-C., Sulem, A.: Generalized Dynkin games and doubly reflected BSDEs with jumps. Electron. J. Probab. 21, paper no. 64, 32 pp (2016)

  8. Dumitrescu, R., Quenez, M.-C., Sulem, A.: Game options in an imperfect market with default. SIAM J. Financial Math. 8(1), 532–559 (2017)

    Article  MathSciNet  Google Scholar 

  9. El Asri, B., Hamadene, S., Wang, H.: \(L^p\)-solutions for doubly reflected backward stochastic differential equations. Stoch. Anal. Appl. 29(6), 907–932 (2011)

    Article  MathSciNet  Google Scholar 

  10. El Karoui, N.: Les aspects probabilistes du contrôle stochastique. In: Ninth Saint Flour Probability Summer School–1979 (Saint Flour, 1979). Lecture Notes in Math., vol. 876, pp. 73–238. Springer, Berlin (1981)

  11. El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C.: Reflected solutions of Backward SDE’s and related obstacle problems for PDE’s. Ann. Probab. 25(2), 702–737 (1997)

    Article  MathSciNet  Google Scholar 

  12. Essaky, H.: Reflected backward stochastic differential equation with jumps and RCLL obstacle. Bulletin des Sciences Mathématiques 132, 690–710 (2008)

    Article  MathSciNet  Google Scholar 

  13. Essaky, H., Harraj, N.: Ouknine: Backward stochastic differential equation with two reflecting barriers and jumps. Stoch. Anal. Appl. 23(5), 921–938 (2005)

    Article  MathSciNet  Google Scholar 

  14. Gal’chouk, L.I.: Optional martingales. Math. USSR Sbornik 40(4), 435–468 (1981)

    Article  Google Scholar 

  15. Grigorova, M., Imkeller, P., Offen, E., Ouknine, Y., Quenez, M.-C.: Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab. 27, 3153–3188 (2017)

    Article  MathSciNet  Google Scholar 

  16. Grigorova, M., Imkeller, P., Ouknine, Y., Quenez, M.-C.: Doubly Reflected BSDEs and \(\varepsilon ^f\)-Dynkin games: beyond the right-continuous case. Electron. J. Probab. 23, paper no. 122, 38 pp (2018)

  17. Grigorova, M., Imkeller, P., Ouknine, Y., Quenez, M.-C.: Optimal stopping with \(f\)- expectations: the irregular case. Stoch. Process. Appl. (2019). In press

  18. Hamadène, S., Hassani, M., Ouknine, Y.: Backward SDEs with two rcll reflecting barriers without Mokobodzki’s hypothesis. Bull. Sci. Math. 134, 874–899 (2010)

    Article  MathSciNet  Google Scholar 

  19. Hamadène, S., Ouknine, Y.: Reflected backward SDEs with general jumps. Teor. Veroyatnost. i Primenen. 60(2), 357–376 (2015)

    Article  MathSciNet  Google Scholar 

  20. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. vol. 288. Springer, Berlin (2003)

  21. Kobylanski, M., Quenez, M.-C.: Optimal stopping time problem in a general framework. Electron. J. Probab. 17(72), 28 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Lenglart, E.: Tribus de Meyer et théorie des processus, Séminaire de probabilités de Strasbourg XIV 1978/79. Lect. Notes Math. 784, 500–546 (1980)

    Article  MathSciNet  Google Scholar 

  23. Maingueneau, M.A.: Temps d’arrêt optimaux et théorie générale. In: Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977). Lecture Notes in Math., vol. 649, pp. 457–467. Springer, Berlin (1978)

  24. Meyer, P.-A.: Un cours sur les intégrales stochastiques (exposés 1 à 6), Séminaire de probabilités de Strasbourg X, pp. 245–400 (1976)

  25. Nikeghbali, A.: An essay on the general theory of stochastic processes. Probab. Surv 3, 345–412 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  Google Scholar 

  27. Protter, P.E.: Stochastic Integration and Differential Equations (Stochastic Modelling and Applied Probability), 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  28. Quenez, M.-C., Sulem, A.: Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps. Stoch. Process. Appl. 124(9), 3031–3054 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous Referee for his valuable comments and suggestions from which the manuscript greatly benefited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Arharas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let T be a fixed positive real number. Let \(\xi =(\xi _t)_{t\in [0,T]}\) be a predictable process in \({\mathbf {S}}^{2,p}\), called obstacle or barrier in \({\mathbf {S}}^{2,p}\).

Definition 9

(One barrier predictable reflected BSDE with driver 0) A process \((Y,Z,M,A,B) \in {\mathbf {S}}^{2,p} \times {\mathbf {H}}^2 \times {\mathbf {M}}^{2,\perp } \times ({\mathbf {S}}^{2,p})^2\) is said to be solution to the predictable reflected BSDE with (lower) barrier \(\xi \) and driver 0, if

$$\begin{aligned} Y_\tau =\xi _T - \int _\tau ^T Z_s dWs - (M_{T^-}-M_{\tau ^-}) + A_T-A_\tau + B_{T^-}-B_{\tau ^-}, \end{aligned}$$
(5.1)

with

  1. (i)

    \( \xi _\tau \le Y_\tau \) a.s. for all \(\tau \in {\mathscr {T}}_0^p\),

  2. (ii)

    A is a non-decreasing right-continuous process with \(A_0=0\) and such that

    $$\begin{aligned} \int _0^T \mathbf{1 }_{\lbrace Y_t > \xi _t \rbrace } \mathrm{d}A^c_t=0 \quad \text {a.s. and}\quad (Y_{\tau ^-} - \xi _{\tau ^-})(A^d_\tau - A^d_{\tau ^-})=0 \quad \text {a.s. for all}\quad \tau \in {\mathscr {T}}_0^p,\nonumber \\ \end{aligned}$$
    (5.2)
  3. (iii)

    B is a non-decreasing right-continuous adapted purely discontinuous process with \(B_{0^-}=0\), and such that

    $$\begin{aligned} (Y_\tau -\xi _\tau )(B_\tau -B_{\tau ^-})=0 \quad \text {a.s. for all}\quad \tau \in {\mathscr {T}}_0^p. \end{aligned}$$
    (5.3)

The following result established by S. Bouhadou and Y. Ouknine in [2] (see Theorem 2, p. 10):

Proposition 4

Let \(\xi \) be a process in \({\mathbf {S}}^{2,p}\). There exists a unique solution \((Y,Z,M,A,B) \in {\mathbf {S}}^{2,p} \times {\mathbf {H}}^2 \times {\mathbf {M}}^{2,\perp } \times ({\mathbf {S}}^{2,p})^2\) of the predictable reflected BSDE from Definition 9, and for each stopping time \(\tau \in {\mathscr {T}}^p_0\), we have

$$\begin{aligned} Y_\tau = \mathop {\mathrm{ess\, sup}}\limits _{S \in {\mathscr {T}}^p_\tau } E(\xi _S \vert {\mathscr {F}}_{\tau ^-}) \quad \text {a.s.} \end{aligned}$$

Here are some elementary properties of this operator.

Lemma 6

The operator \({\mathscr {P}}{} \textit{re}\) is non-decreasing, i.e., for \(\xi , \xi ' \in {\mathbf {S}}^{2,p}\) such that \(\xi \le \xi '\) we have \({\mathscr {P}}{} \textit{re}[\xi ] \le {\mathscr {P}}{} \textit{re}[\xi ']\). Further, for each \(\xi \in {\mathbf {S}}^{2,p}\), \({\mathscr {P}}{} \textit{re}[\xi ]\) is a predictable strong supermartingale and satisfies \({\mathscr {P}}{} \textit{re}[\xi ] \ge \xi \).

Proof

By definition, \({\mathscr {P}}{} \textit{re}[\xi ]\) is the first component of the solution of the predictable reflected BSDE (5.1). Hence, Theorem 2 in [2] shows that \({\mathscr {P}}{} \textit{re}[\xi ]\) is the predictable value function associated with the reward \(\xi \), that is for each stopping time \(S \in {\mathscr {T}}^p_0\)

$$\begin{aligned} {\mathscr {P}}{} \textit{re}[\xi ]_S = \mathop {\mathrm{ess\, sup}}\limits _{\tau \in {\mathscr {T}}^p_S} E(\xi _\tau \vert {\mathscr {F}}_{S^-}). \end{aligned}$$

Thus, the operator \({\mathscr {P}}{} \textit{re}\) is non-decreasing and the process \(({\mathscr {P}}{} \textit{re}[\xi ])_{t\in [0,T]}\) is characterized as the predictable Snell envelope associated with the process \((\xi )_{t\in [0,T]}\), that is the smallest strong predictable supermartingale greater than or equal to \(\xi \) (cf. [2, Lemma 15, p. 34]) and the lemma follows. \(\square \)

Remark 13

If \(\xi \in {\mathscr {T}}^p_0\) is a predictable strong supermartingale, then \({\mathscr {P}}{} \textit{re}[\xi ]=\xi \). Indeed, it remains to show that \({\mathscr {P}}{} \textit{re}[\xi ] \le \xi \). Let \(S \in {\mathscr {T}}^p_0 \), since \(\xi \) is a predictable strong supermartingale, for each stopping time \(\tau \in {\mathscr {T}}^p_S\), we have

$$\begin{aligned} E(\xi _\tau \vert {\mathscr {F}}_{S^-}) \le \xi _S. \end{aligned}$$

By definition of the essential supremum, we get \({\mathscr {P}}{} \textit{re}[\xi ]_S \le \xi _S\). Consequently, \({\mathscr {P}}{} \textit{re}[\xi ] = \xi \).

Remark 14

The limit of a non-decreasing sequence of predictable strong supermartingales is also a predictable strong supermartingale (It can be shown using Lebesgue’s dominated convergence theorem and the fact that every trajectory of a predictable strong supermartingale is bounded on all compact interval of \({\mathbb {R}}^+\)).

Proof of Lemma 3.16

Let \(n\in {\mathbb {N}}\), we begin by proving that the processes \({\mathbf {J}}^{p,n}\) and \(\bar{{\mathbf {J}}}^{p,n}\) are valued in \([0,+\infty ]\). By definition, we have:

$$\begin{aligned} {\mathbf {J}}^{p,n}_T=\bar{{\mathbf {J}}}^{p,n}_T=0 \quad \text {a.s. for each} \quad n. \end{aligned}$$
(5.4)

Hence, \({\mathbf {J}}^{p,n}\) and \(\bar{{\mathbf {J}}}^{p,n}\) are nonnegative since they are predictable strong supermartingales. From \({\tilde{\xi }}^{p,g}_T={\tilde{\zeta }}^{p,g}_T=0\), it follows that \((\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p} ) \mathbf{1 }_{[0,T)}=(\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p} )\) and \(({\mathbf {J}}^{p,n} -{\tilde{\zeta }}^{g,p} ) \mathbf{1 }_{[0,T)}=({\mathbf {J}}^{p,n} -{\tilde{\zeta }}^{g,p} )\). We prove that \(({\mathbf {J}}^{p,n})_{n\in {\mathbb {N}}}\) and \((\bar{{\mathbf {J}}}^{p,n})_{n\in {\mathbb {N}}}\) are non-decreasing sequences of processes.

We have \({\mathbf {J}}^{p,0}=0 \le {\mathbf {J}}^{p,1}\) and \(\bar{{\mathbf {J}}}^{p,0}=0 \le \bar{{\mathbf {J}}}^{p,1}\). Suppose that \({\mathbf {J}}^{p,n-1} \le {\mathbf {J}}^{p,n}\) and \(\bar{{\mathbf {J}}}^{p,n-1} \le \bar{{\mathbf {J}}}^{p,n}\). The non-decreasingness of the operator \({\mathscr {P}}{} \textit{re}\) gives

$$\begin{aligned}&{\mathscr {P}}{} \textit{re}[{\mathbf {J}}^{p,n-1} -{\tilde{\zeta }}^{g,p} ] \le {\mathscr {P}}{} \textit{re}[{\mathbf {J}}^{p,n} -{\tilde{\zeta }}^{g,p} ] \\&{\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n-1} + {\tilde{\xi }}^{g,p}] \le {\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}]. \end{aligned}$$

Thus, \({\mathbf {J}}^{p,n-1} \le {\mathbf {J}}^{p,n}\) and \(\bar{{\mathbf {J}}}^{p,n-1} \le \bar{{\mathbf {J}}}^{p,n}\), which is the desired conclusion.

The processes \({\mathbf {J}}^p := \lim \uparrow {\mathbf {J}}^{p,n} \) and \( \bar{{\mathbf {J}}}^p := \lim \uparrow \bar{{\mathbf {J}}}^{p,n}\) are predictable (valued in \([0,+\infty ]\)) as the limit of sequences of predictable nonnegative processes. By (5.4), we get \({\mathbf {J}}^p _T = \bar{{\mathbf {J}}}^p_T=0 \) a.s. Moreover, \({\mathbf {J}}^p \) and \(\bar{{\mathbf {J}}}^p\) are strong supermartingales valued in \([0, +\infty ]\) (cf. Remark 14).

We next prove that \({\mathbf {J}}^p \) and \( \bar{{\mathbf {J}}}^p\) belong to \({\mathbf {S}}^{2,p}\). For this purpose, consider \(H^{p}\) and \({\bar{H}}^{p}\) the nonnegative predictable strong supermartingales that come from Mokobodzki’s condition for \((\xi ,\zeta )\). Then, we define two processes \(H^{g,p}\) and \({\bar{H}}^{g,p}\) as follows:

$$\begin{aligned} H^{g,p}_t&:= H^p_t + E[\xi ^-_T \vert {\mathscr {F}}_{t^-}] + E\left[ \int _t^T g^-(s) \mathrm{d}s \vert {\mathscr {F}}_{t^-}\right] \\ {\bar{H}}^{g,p}_t&:= {\bar{H}}^p_t + E[\xi ^+_T \vert {\mathscr {F}}_{t^-}] + E\left[ \int _t^T g^+(s) \mathrm{d}s, \vert {\mathscr {F}}_{t^-}\right] . \end{aligned}$$

It is easy to check that \(H^{g,p}\) and \({\bar{H}}^{g,p}\) are nonnegative predictable strong supermartingales in \({\mathbf {S}}^{2,p}\). From Mokobodzki’s condition, we get

$$\begin{aligned} {\tilde{\xi }}^{g,p} \le H^{g,p} - {\bar{H}}^{g,p} \le {\tilde{\zeta }}^{g,p}. \end{aligned}$$
(5.5)

Let us now show by induction that \({\mathbf {J}}^{p,n} \le H^{g,p}\) and \(\bar{{\mathbf {J}}}^{p,n} \le {\bar{H}}^{g,p}\), for all \(n \in {\mathbb {N}}\). First, we have \({\mathbf {J}}^{p,0}=0 \le H^{g,p}\) and \(\bar{{\mathbf {J}}}^{p,0}=0 \le {\bar{H}}^{g,p}\). Suppose that, for a fixed \(n \in {\mathbb {N}}\), we have \({\mathbf {J}}^{p,n} \le H^{g,p}\) and \(\bar{{\mathbf {J}}}^{p,n} \le {\bar{H}}^{g,p}\). From Eq. (5.5), we get \({\mathbf {J}}^{p,n} \le {\bar{H}}^{g,p} + {\tilde{\zeta }}^{g,p} \) and \( \bar{{\mathbf {J}}}^{p,n} \le H^{g,p} - {\tilde{\xi }}^{g,p}\). As the operator \({\mathscr {P}}{} \textit{re}\) is a non-decreasing operator (see Lemma 6), we get

$$\begin{aligned}&{\mathbf {J}}^{p,n+1} = {\mathbf {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}] \le {\mathscr {P}}{} \textit{re}[H^{g,p}]\quad \text {and}\\&\bar{{\mathbf {J}}}^{p,n+1} = {\mathbf {P}}{} \textit{re}[{\mathbf {J}}^{p,n} - {\tilde{\zeta }}^{g,p}] \le {\mathscr {P}}{} \textit{re}[{\bar{H}}^{g,p}]. \end{aligned}$$

Since \(H^{g,p} \) and \( {\bar{H}}^{g,p}\) are predictable strong supermartingales, it follows by Remark 13 that \({\mathscr {P}}{} \textit{re}[H^{g,p}]= H^{g,p}\) and \({\mathscr {P}}{} \textit{re}[{\bar{H}}^{g,p}]= {\bar{H}}^{g,p}\). Hence, \({\mathbf {J}}^{p,n+1} \le H^{g,p}\) and \(\bar{{\mathbf {J}}}^{p,n+1} \le {\bar{H}}^{g,p}\), which is the desired conclusion.

By letting n tend to \(+ \infty \) in \({\mathbf {J}}^{p,n} \le H^{g,p}\) and \(\bar{{\mathbf {J}}}^{p,n} \le {\bar{H}}^{g,p}\), we get \({\mathbf {J}}^{p} \le H^{g,p}\) and \(\bar{{\mathbf {J}}}^{p} \le {\bar{H}}^{g,p}\). Hence, \({\mathbf {J}}^{p}\) and \(\bar{{\mathbf {J}}}^{p}\) belong to \({\mathbf {S}}^{2,p}\).

The proof is completed by showing that the processes \({\mathbf {J}}^{p}\) and \(\bar{{\mathbf {J}}}^{p}\) satisfy the system (3.11). Note that \((\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p})_{n\in {\mathbb {N}}}\) is a non-decreasing sequence of processes belonging to \({\mathbf {S}}^{2,p}\). As the operator \({\mathscr {P}}{} \textit{re}\) is a non-decreasing, the sequence \(({\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}])_{n\in {\mathbb {N}}}\) is also non-decreasing. Hence, for each \(n \in {\mathbb {N}}\), the following property

$$\begin{aligned} {\mathbf {J}}^{p,n+1} ={\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}] \le {\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^p + {\tilde{\xi }}^{g,p}], \end{aligned}$$

holds. By letting n go to \(+\infty \), we get

$$\begin{aligned} {\mathbf {J}}^{p} \le {\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^p + {\tilde{\xi }}^{g,p}]. \end{aligned}$$
(5.6)

Now, by definition of \({\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}]\) as the solution of the predictable reflected BSDE with obstacle \(\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}\), we have \({\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}] \ge \bar{{\mathbf {J}}}^{p,n} + {\tilde{\xi }}^{g,p}\), for all \(n\in {\mathbb {N}}\). Thus, by letting n go to \(+\infty \), we get \({\mathbf {J}}^{p} \ge \bar{{\mathbf {J}}}^p + {\tilde{\xi }}^{g,p}\). Hence,

$$\begin{aligned} {\mathscr {P}}{} \textit{re}[{\mathbf {J}}^{p}] \ge {\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^p + {\tilde{\xi }}^{g,p}] \end{aligned}$$
(5.7)

Since \({\mathbf {J}}^{p}\) is a predictable strong supermartingale, Remark 13 implies \({\mathscr {P}}{} \textit{re}[{\mathbf {J}}^{p}]= {\mathbf {J}}^{p}\). From inequality (5.6), It follows that \({\mathbf {J}}^{p}= {\mathscr {P}}{} \textit{re}[\bar{{\mathbf {J}}}^p + {\tilde{\xi }}^{g,p}]\). We show similarly that \(\bar{{\mathbf {J}}}^{p}= {\mathscr {P}}{} \textit{re}[{\mathbf {J}}^p + {\tilde{\zeta }}^{g,p}]\). Since, \({\mathbf {J}}^{p}_T= \bar{{\mathbf {J}}}^{p}_T=0\), we conclude that \({\mathbf {J}}^{p}\) and \(\bar{{\mathbf {J}}}^{p}\) are solutions of the system (3.11), and the lemma follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arharas, I., Bouhadou, S. & Ouknine, Y. Doubly Reflected Backward Stochastic Differential Equations in the Predictable Setting. J Theor Probab 35, 115–141 (2022). https://doi.org/10.1007/s10959-020-01070-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01070-5

Keywords

Mathematics Subject Classifications 2010

Navigation