Skip to main content
Log in

Parallel approaches to improve the speed of chaotic-maps-based encryption using GPU

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Chaos-based cryptography has become a major interest for providing effective, fast and secure encryption in the recent few years. Chaos-based encryption applies basically repetitive steps of more than one chaotic map to increase the strength of the security. However, this repetition unfortunately increases the processing time especially for videos. With the advent of the graphical processing units (GPU), many encryption algorithms were applied for image and video encryption using GPU to gain a speedup for the whole process. In this paper, we aim to introduce parallel implementation for chaos-based encryption techniques which enables using GPUs to perform the encryption and decryption process more efficient than using the traditional methods in processing both images and videos. The simulation results of the proposed algorithms on GPU using CUDA-OpenGL demonstrate an execution time reduction of almost 75% of encryption speed which encourages exploring more chaotic maps for video encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Biham E, Shamir A.: Differential cryptanalysis of the data encryption standard. Springer Science & Business Media; (2012)

  2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  3. Coppersmith, D.: The data encryption standard (DES) and its strength against attacks. IBM J. Res. Dev. 38(3), 243–250 (1994)

    Article  Google Scholar 

  4. Ranjan R, Poonguzhali I.: VLSI implementation of IDEA encryption algorithm. Mobile Pervasive Comput. (CoMPC–2008). 97–101 (2008)

  5. Kwok, H.S., Tang, W.K.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos, Solitons Fractals 32(4), 1518–1529 (2007)

    Article  MathSciNet  Google Scholar 

  6. Fu, C., Wen, Z.K., Zhu, Z.L., Yu, H.: A security improved image encryption scheme based on chaotic Baker map and hyperchaotic Lorenz system. Int. J. Comput. Sci. Eng. 12(2–3), 113–123 (2016)

    Google Scholar 

  7. Ditto, W., Munakata, T.: Principles and applications of chaotic systems. Commun. ACM 38(11), 96–102 (1995)

    Article  Google Scholar 

  8. Wong KW. Image encryption using chaotic maps. In: Intelligent Computing Based on Chaos 2009 (pp. 333–354). Springer Berlin Heidelberg

  9. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurcation Chaos. 8(06), 1259–1284 (1998)

    Article  MathSciNet  Google Scholar 

  10. Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of the chaotic standard map. Chaos, Solitons Fractals 26(1), 117–129 (2005)

    Article  Google Scholar 

  11. Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons Fractals 21(3), 749–761 (2004)

    Article  MathSciNet  Google Scholar 

  12. Elgendy, F., Sarhan, A.M., Eltobely, T.E., El-Zoghdy, S.F., El-Sayed, H.S., Faragallah, O.S.: Chaos-based model for encryption and decryption of digital images. Multimedia Tools Appl. 75(18), 11529–11553 (2016)

    Article  Google Scholar 

  13. Zhou, Q., Wong, K.W., Liao, X., Xiang, T., Hu, Y.: Parallel image encryption algorithm based on discretized chaotic map. Chaos, Solitons Fractals 38(4), 1081–1092 (2008)

    Article  Google Scholar 

  14. Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012)

    Article  MathSciNet  Google Scholar 

  15. Raman, A.: Parallel processing of chaos-based image encryption algorithms. University of California, Irvine (2016)

    Google Scholar 

  16. You, L., Yang, E., & Wang, G.: A novel parallel image encryption algorithm based on hybrid chaotic maps with OpenCL implementation. Soft Comput. 1–15 (2020)

  17. He, G., Wu, W., Nie, L., Wen, J., Yang, C., & Yu, W.: An improved image multi-dimensional chaos encryption algorithm based on CUDA. In 2019 IEEE 9th International Conference on Information Science and Technology (ICIST), 183–187 (2019)

  18. Luo, Y., Zhou, R., Liu, J., Cao, Y., Ding, X.: A parallel image encryption algorithm based on the piecewise linear chaotic map and hyper-chaotic map. Nonlinear Dyn. 93(3), 1165–1181 (2018)

    Article  Google Scholar 

  19. Lee, W.K., Phan, R.C.W., Yap, W.S., Goi, B.M.: SPRING: a novel parallel chaos-based image encryption scheme. Nonlinear Dyn. 92(2), 575–593 (2018)

    Article  Google Scholar 

  20. Ramalingam, B., Ravichandran, D., Annadurai, A.A., Rengarajan, A., Rayappan, J.B.B.: Chaos triggered image encryption-a reconfigurable security solution. Multimedia Tools Appl. 77(10), 11669–11692 (2018)

    Article  Google Scholar 

  21. Rostami, M.J., Shahba, A., Saryazdi, S., Nezamabadi-pour, H.: A novel parallel image encryption with chaotic windows based on logistic map. Comput. Electr. Eng. 62, 384–400 (2017)

    Article  Google Scholar 

  22. Yuan, H.M., Liu, Y., Lin, T., Hu, T., Gong, L.H.: A new parallel image cryptosystem based on 5D hyper-chaotic system. Signal Proc.: Image Commun. 52, 87–96 (2017)

    Google Scholar 

  23. Huang, R., Rhee, K.H., Uchida, S.: A parallel image encryption method based on compressive sensing. Multimedia Tools Appl. 72(1), 71–93 (2014)

    Article  Google Scholar 

  24. Yuan, X., Zhao, J., Yang, Y., Wang, Y.: Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl Soft Comput. 17, 12–22 (2014)

    Article  Google Scholar 

  25. Wang, Y., Han, C., & Liu, Y.: A parallel encryption algorithm for color images based on lorenz chaotic sequences. In 2006 IEEE 6th World Congress on Intelligent Control and Automation, 2, 9744–9747 (2006)

  26. Wang, W., Hu, Y., Chen, L., Huang, X., & Sunar, B.: Accelerating fully homomorphic encryption using GPU. In 2012 IEEE conference on high performance extreme computing (pp. 1–5) (2012)

  27. Iwai, K., Nishikawa, N., Kurokawa, T.: Acceleration of AES encryption on CUDA GPU. Int. J. Netw. Comput. 2(1), 131–145 (2012)

    Google Scholar 

  28. Dai, W., Doröz, Y., & Sunar, B.: Accelerating NTRU based homomorphic encryption using GPUs. In 2014 IEEE High Performance Extreme Computing Conference (HPEC), 1–6 (2014)

  29. Khedr, A., Gulak, G.: Securemed: secure medical computation using gpu-accelerated homomorphic encryption scheme. IEEE J Biomed. Health Inform. 22(2), 597–606 (2017)

    Article  Google Scholar 

  30. Elrefaey, A., Sarhan, A., & El-Shennawy, N.M.: Improving the speed of chaotic-maps-based image encryption using parallelization. In 2017 IEEE 13th International Computer Engineering Conference (ICENCO), 61–66 (2017)

  31. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., etal.: A large-scale benchmark dataset for event recognition in surveillance video. In IEEE CVPR 2011 international conference, 3153–3160 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany Sarhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elrefaey, A., Sarhan, A. & El-Shennawy, N.M. Parallel approaches to improve the speed of chaotic-maps-based encryption using GPU. J Real-Time Image Proc 18, 1897–1906 (2021). https://doi.org/10.1007/s11554-020-01064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-01064-w

Keywords

Navigation