Skip to main content
Log in

Degradation of Tetracycline in Polluted Wastewater by Persulfate over Copper Alginate/Graphene Oxide Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Due to public concern about tetracycline (TC), it is imperative to eliminate this compound from the environment. This article describes the preparation of an efficient and low-cost porous copper alginate/graphene oxide (CA/GO) composite material by freeze-drying. The application of tetracycline removal in the presence of persulfate (PS) was studied. The effects of pH, PS, catalyst dosage and tetracycline concentration on adsorption and degradation were investigated. The synthesized composites were characterized by Scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA). The degradation rate of tetracycline increases with the increase of the compound dose, and decreases with the increase of the initial pH. The adsorption of tetracycline by this catalyst is suitable for Langmuir model. Under the optimum conditions, the removal efficiency of tetracycline was up to 98%. The high reactivity of the composite material is closely related to its redox ability. At the same time, the reusability of the material was studied. After being recycled four times under the same conditions, the removal rate of tetracycline reached about 85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiong W, Zeng Z, Zeng G, Yang Z, Xiao R, Li X, Cao J, Zhou C, Chen H, Jia M, Yang Y, Wang W, Tang X (2019) Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution. Chem Eng J 374:91–99. https://doi.org/10.1016/j.cej.2019.05.164

    Article  CAS  Google Scholar 

  2. Yuan X, Shen D, Zhang Q, Zou H, Liu Z, Peng F (2019) Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem Eng J 369:292–301. https://doi.org/10.1016/j.cej.2019.03.082

    Article  CAS  Google Scholar 

  3. Zhou C, Huang D, Xu P, Zeng G, Huang J, Shi T, Lai C, Zhang C, Cheng M, Lu Y, Duan A, Xiong W, Zhou M (2019) Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chem Eng J 370:1077–1086. https://doi.org/10.1016/j.cej.2019.03.279

    Article  CAS  Google Scholar 

  4. Lin Z, Li M, Gehring R, Riviere JE (2015) Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans. J Pharm Sci 104(1):233–243. https://doi.org/10.1002/jps.24244

    Article  CAS  PubMed  Google Scholar 

  5. He D, Sun Y, Xin L, Feng J (2015) Corrigendum to “aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2” [Chem. Eng. J. (2014) 18–25]. Chem Eng J 262:1311. https://doi.org/https://doi.org/10.1016/j.cej.2014.10.084

  6. Peiris C, Gunatilake SR, Mlsna TE, Mohan D, Vithanage M (2017) Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour Technol 246:150–159. https://doi.org/10.1016/j.biortech.2017.07.150

    Article  CAS  PubMed  Google Scholar 

  7. Calisto V, Ferreira CIA, Oliveira JABP, Otero M, Esteves VI (2015) Adsorptive removal of pharmaceuticals from water by commercial and waste-based carbons. J Environ Manage 152:83–90. https://doi.org/10.1016/j.jenvman.2015.01.019

    Article  CAS  PubMed  Google Scholar 

  8. Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ (2011) Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin. China Environ Sci Technol 45(5):1827–1833. https://doi.org/10.1021/es104009s

    Article  CAS  PubMed  Google Scholar 

  9. Pham TTH, Rossi P, Dinh HDK, Pham NTA, Tran PA, Ho T, Dinh QT, De Alencastro LF (2018) Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam). J Environ Manage 214:149–156. https://doi.org/10.1016/j.jenvman.2018.02.089

    Article  CAS  PubMed  Google Scholar 

  10. Xu J, Zhang Y, Zhou C, Guo C, Wang D, Du P, Luo Y, Wan J, Meng W (2014) Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci Total Environ 497–498:267–273. https://doi.org/10.1016/j.scitotenv.2014.07.114

    Article  CAS  PubMed  Google Scholar 

  11. Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11(3):209–227. https://doi.org/10.1007/s10311-013-0404-8

    Article  CAS  Google Scholar 

  12. Zhuang Y, Liu QZ, Kong Y, Shen CC, Hao HT, Dionysiou DD, Shi BY (2019) Enhanced antibiotic removal through a dual-reaction-center fenton-like process in 3D graphene based hydrogels. Environ-Sci Nano 6(2):388–398. https://doi.org/10.1039/c8en01339j

    Article  CAS  Google Scholar 

  13. Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen JH (2016) Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J Mater Chem A 4(28):10885–10892. https://doi.org/10.1039/c6ta02738e

    Article  CAS  Google Scholar 

  14. Yu W, Wen Q, Yang J, Xiao K, Zhu Y, Tao S, Lv Y, Liang S, Fan W, Zhu S, Liu B, Hou H, Hu J (2019) Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron in waste activated sludge dewatering. Water Res 148:60–69. https://doi.org/10.1016/j.watres.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Zhou J, Chen X, Wang L, Cai W (2019) Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chem Eng J 369:745–757. https://doi.org/10.1016/j.cej.2019.03.108

    Article  CAS  Google Scholar 

  16. Dong X, Ren B, Sun Z, Li C, Zhang X, Kong M, Zheng S, Dionysiou DD (2019) Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl Catal B 253:206–217. https://doi.org/10.1016/j.apcatb.2019.04.052

    Article  CAS  Google Scholar 

  17. Liu X, Huang F, Yu Y, Zhao P, Zhou Y, He Y, Xu Y, Zhang Y (2019) Ofloxacin degradation over Cu–Ce tyre carbon catalysts by the microwave assisted persulfate process. Appl Catal B 253:149–159. https://doi.org/10.1016/j.apcatb.2019.04.047

    Article  CAS  Google Scholar 

  18. Yu J, Tang L, Pang Y, Zeng G, Wang J, Deng Y, Liu Y, Feng H, Chen S, Ren X (2019) Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism. Chem Eng J 364:146–159. https://doi.org/10.1016/j.cej.2019.01.163

    Article  CAS  Google Scholar 

  19. Zhang D, Wu L, Yao J, Herrmann H, Richnow H-H (2018) Carbon and hydrogen isotope fractionation of phthalate esters during degradation by sulfate and hydroxyl radicals. Chem Eng J 347:111–118. https://doi.org/10.1016/j.cej.2018.04.047

    Article  CAS  Google Scholar 

  20. Dong CD, Chen CW, Tsai ML, Hung CM (2019) The efficacy and cytotoxicity of iron oxide-carbon black composites for liquid-phase toluene oxidation by persulfate. Environ Sci Pollut Res Int 26(15):14786–14796. https://doi.org/10.1007/s11356-018-3593-7

    Article  CAS  PubMed  Google Scholar 

  21. Du J, Bao J, Liu Y, Ling H, Zheng H, Kim SH, Dionysiou DD (2016) Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A. J Hazard Mater 320:150–159. https://doi.org/10.1016/j.jhazmat.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  22. Facchi DP, Cazetta AL, Canesin EA, Almeida VC, Bonafé EG, Kipper MJ, Martins AF (2018) New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems. Chem Eng J 337:595–608. https://doi.org/10.1016/j.cej.2017.12.142

    Article  CAS  Google Scholar 

  23. Xiong W, Ren C, Tian M, Yang X, Li J, Li B (2018) Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chem 252:181–188. https://doi.org/10.1016/j.foodchem.2018.01.067

    Article  CAS  PubMed  Google Scholar 

  24. Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ, Loh KP (2012) Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 3:1298. https://doi.org/10.1038/ncomms2315

    Article  CAS  PubMed  Google Scholar 

  25. Zhang XP, Li YH, Li MX, Zheng H, Du QJ, Li H, Wang YQ, Wang DC, Wang CP, Sui KY, Li HL, Xia YZ (2019) Preparation of improved gluten material and its adsorption behavior for congo red from aqueous solution. J Colloid Interface Sci 556:249–257. https://doi.org/10.1016/j.jcis.2019.08.037

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XP, Li YH, Li MX, Zheng H, Du QJ, Li H, Wang YQ, Wang DC, Wang CP, Sui KY, Li HL, Xia YZ (2020) Removal of methylene blue from aqueous solution using high performance calcium alginate/activated carbon membrane. Int J Cloth Sci Technol 32(3):307–321. https://doi.org/10.1108/ijcst-03-2019-0044

    Article  Google Scholar 

  27. Kang J, Liu H, Zheng Y-M, Qu J, Chen JP (2010) Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. J Colloid Interface Sci 344(1):117–125. https://doi.org/10.1016/j.jcis.2009.11.049

    Article  CAS  PubMed  Google Scholar 

  28. Lu X, Gao Y, Luo J, Yan S, Rengel Z, Zhang Z (2014) Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes). J Hazard Mater 280:389–398. https://doi.org/10.1016/j.jhazmat.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  29. Lau YY, Wong YS, Ang TZ, Ong SA, Lutpi NA, Ho LN (2018) Degradation reaction of Diazo reactive black 5 dye with copper (II) sulfate catalyst in thermolysis treatment. Environ Sci Pollut Res Int 25(7):7067–7075. https://doi.org/10.1007/s11356-017-1069-9

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen V-T, Hung C-M, Nguyen T-B, Chang J-H, Wang T-H, Wu C-H, Lin Y-L, Chen C-W, Dong C-D (2019) Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal. Catalysts. https://doi.org/10.3390/catal9010049

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nguyen V-T, Nguyen T-B, Chen C-W, Hung C-M, Huang CP, Dong C-D (2019) Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water. Biores Technol 292:121954. https://doi.org/10.1016/j.biortech.2019.121954

    Article  CAS  Google Scholar 

  32. Nguyen V-T, Nguyen T-B, Chen C-W, Hung C-M, Vo T-D-H, Chang J-H, Dong C-D (2019) Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. Bioresour Technol 284:197–203. https://doi.org/10.1016/j.biortech.2019.03.096

    Article  CAS  PubMed  Google Scholar 

  33. George G, Saravanakumar MP (2018) Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn–Al LDH: application on crystal violet and malachite green dye adsorption—isotherm, kinetics and Box-Behnken design. Environ Sci Pollut Res 25(30):30236–30254. https://doi.org/10.1007/s11356-018-3001-3

    Article  CAS  Google Scholar 

  34. Safari GH, Nasseri S, Mahvi AH, Yaghmaeian K, Nabizadeh R, Alimohammadi M (2015) Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. J Environ Health Sci Eng 13:76. https://doi.org/10.1186/s40201-015-0234-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    Article  CAS  PubMed  Google Scholar 

  36. Cheng Y, Song W, Liu J, Zheng H, Zhao Z, Xu C, Wei Y, Hensen EJM (2017) Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr oxide. ACS Catal 7(6):3883–3892. https://doi.org/10.1021/acscatal.6b03387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marzbali MH, Esmaieli M, Abolghasemi H, Marzbali MH (2016) Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: a batch study. Process Saf Environ Prot 102:700–709. https://doi.org/10.1016/j.psep.2016.05.025

    Article  CAS  Google Scholar 

  38. Palominos RA, Mondaca MA, Giraldo A, Peñuela G, Pérez-Moya M, Mansilla HD (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144(1):100–105. https://doi.org/10.1016/j.cattod.2008.12.031

    Article  CAS  Google Scholar 

  39. Fujioka N, Suzuki M, Kurosu S, Kawase Y (2016) Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: effects of pH on iron dissolution and formation of iron oxide/hydroxide layer. Chemosphere 144:1738–1746. https://doi.org/10.1016/j.chemosphere.2015.10.064

    Article  CAS  PubMed  Google Scholar 

  40. Fang G, Liu C, Gao J, Dionysiou DD, Zhou D (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49(9):5645–5653. https://doi.org/10.1021/es5061512

    Article  CAS  PubMed  Google Scholar 

  41. Duan X, Su C, Zhou L, Sun H, Suvorova A, Odedairo T, Zhu Z, Shao Z, Wang S (2016) Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl Catal B 194:7–15. https://doi.org/10.1016/j.apcatb.2016.04.043

    Article  CAS  Google Scholar 

  42. Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44(16):6423–6428. https://doi.org/10.1021/es1013714

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672140), Taishan Scholar Project of Shandong Province (201511029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Li, Y., Sun, Y. et al. Degradation of Tetracycline in Polluted Wastewater by Persulfate over Copper Alginate/Graphene Oxide Composites. J Polym Environ 29, 2227–2235 (2021). https://doi.org/10.1007/s10924-020-02038-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02038-6

Keywords

Navigation