Skip to main content
Log in

Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Alkaline stress is one of the severe abiotic stresses, which is not well studied so far, especially among cyanobacteria. To affirm the characteristics of alkaline stress and the subsequent adaptive responses in Arthrospira platensis NIES-39 and Arthrospira platensis PCC 7345, photosynthetic pigments, spectral properties of thylakoids, PSII and PSI activities, and pigment-protein profiles of thylakoids under different pH regimes were examined. The accessory pigments showed a pH-mediated sensitivity. The pigment-protein complexes of thylakoids are also affected, resulting in the altered fluorescence emission profile. At pH 11, a possible shift of the PBsome antenna complex from PSII to PSI is observed. PSII reaction center is found to be more susceptible to alkaline stress in comparison to the PSI. In Arthrospira platensis NIES-39 at pH 11, a drop of 68% in the oxygen evolution with a significant increase of PSI activity by 114% is recorded within 24 h of pH treatment. Alterations in the cellular ultrastructure of Arthrospira platensis NIES-39 at pH 11 were observed, along with the increased number of plastoglobules attached with the thylakoid membranes. Arthrospira platensis NIES-39 is more adaptable to pH variation than Arthrospira platensis PCC 7345.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data generated and analyzed during this study are included in this published article along and the supplementary files.

Abbreviations

CBB G-250:

Coomassie Brilliant Blue G-250

Chl:

Chlorophyll

DCMU:

1,1-Dichloro methyl diphenyl urea

DCPIP:

2,5-Dichlorophenol indophenol

LiDS:

Lithium dodecyl sulfate

MV:

Methyl viologen

NIES:

National Institute of Environmental Studies

pBQ:

para-Benzoquinone

PBsomes:

Phycobilisomes

PC:

Phycocyanin

PCC:

Pasteur Culture Collection

PEC:

Phycoerythrocyanin

PSI:

Photosystem I

PSII:

Photosystem II

TEM:

Transmission electron microscopy

References

  • Abbasi B, Shokravi SH, Golsefidi MAH, Sateiee A, Kiaei E (2019) Effects of alkalinity, extremely low carbon dioxide concentration and irradiance on spectral properties, phycobilisome, photosynthesis, photosystems and functional groups of the native cyanobacterium Calothrix sp. ISC 65. Аlgologia 29:40–58

    Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystem I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen KD, Staehelin LA (1991) Resolution of 16 to 20 Chl-protein complexes using a low ionic strength native green gel system. Anal Biochem 194:214–222

    Article  PubMed  CAS  Google Scholar 

  • Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  PubMed  CAS  Google Scholar 

  • Ataeian M, Liu Y, Canon-Rubio KA, Nightingale M, Strous M, Vadlamani A (2019) Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium at pH up to 11.2. Biotechnol Bioeng 116:1604–1611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babu TS, Kumar A, Varma AK (1991) Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant physiol 95:492–497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banciu HL, Sorokin DY (2013) Adaptation in haloalkaliphiles and natronophilic bacteria. In: Seckbach J, Oren A, Stan-Lotter H (ed) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology. Netherlands, Springer, pp 121-178

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77

    Article  PubMed  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bréhélin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry tricks. Photochem Photobiol 84:1388–1394

    Article  PubMed  Google Scholar 

  • Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61–75

    Article  PubMed  CAS  Google Scholar 

  • Burns R, MacDonald CD, McGinn PJ, Campbell DA (2005) Inorganic carbon repletion disrupts photosynthetic acclimation to low temperature in the cyanobacterium Synechococcus elongatus. J Phycol 41:322–334

    Article  CAS  Google Scholar 

  • Campbell SA, Nishio JN (2000) Iron deficiency studies of sugar beet using an improved sodium bicarbonate buffered hydroponics growth system. J Plant Nutr 23:741–757

    Article  CAS  Google Scholar 

  • Chang R, Lv B, Li B (2017) Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis. J Proteomics 165:119–131

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Klein A, Xiang M, Backhaus RA, Kuntz M (1998) Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J 14:317–326

    Article  Google Scholar 

  • Chen S, Xing J, Lan H (2012) Comparative effects of neutral salt and alkaline salt stress on seed germination, early seedling growth and physiological response of a halophyte species Chenopodium glaucum. Afr J Biotechnol 11:9572–9581

    CAS  Google Scholar 

  • Chukhutsina C, Bersanini L, Aro EM, van Amerongen H (2015) Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. Sci Rep 5:1–10

    Article  Google Scholar 

  • Delepelaire P, Chua NH (1979) Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4°C: characterizations of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci 76:111-115, Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 C: Characterizations of two additional chlorophyll a-protein complexes

  • Dumay J, Morançais M (2016) Proteins and pigments. In: Levine I (ed) Fleurence J. Academic Press, Seaweed in health and disease prevention, pp 275–318

    Google Scholar 

  • Endo T, Schreiber U, Asada K (1995) Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant Cell Physiol 36:1253–1258

    CAS  Google Scholar 

  • Food and Agriculture Organization of the USA. Land and Plant Nutrition Management Service (2009)

  • Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H, Suzuki I, Masuda T, Mochimaru M, Takaichi S, Awai K, Sekine M, Horikawa H, Yashiro I, Omata S, Takarada H, Katano Y, Kosugi H, Tanikawa S, Ohmori K, Sato N, Ikeuchi M, Fujita N, Ohmori M (2010) Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res 17:85–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao Z, Han J, Mu C, Lin J (2014) Effects of saline and alkaline stresses on growth and physiological changes in oat (Avena sativa L.) seedlings. Not Bot Horti Agrobot 42:357–362

    Article  CAS  Google Scholar 

  • Gilmour DJ, Hipkins MF, Boney AD (1984) The effect of osmotic and ionic stress on the primary processes of photosynthesis in Dunaliella tertiolecta. J Exp Bot 35:18–27

    Article  CAS  Google Scholar 

  • Gilmour DJ, Hipkins MF, Webber AN, Baker NR, Boney AD (1985) The effect of ionic stress on photosynthesis in Dunaliella tertiolecta. Planta 163:250–256

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907–915

    Article  PubMed  CAS  Google Scholar 

  • Gorham J, Wyn Jones RG, McDonnel E (1985) Some mechanisms of salt tolerance in crop plants. Plant Soil 89:15–40

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo R, Yang ZZ, Li F, Yan CR, Zhong XL, Liu Q, Xia X, Li HR, Zhao L (2015) Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol 15:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagemann M, Erdmann N (1997) Environmental stresses. In: Rai AK (ed) Cyanobacterial nitrogen metabolism and environmental biotechnology. Springer-Verlag, Heidelberg, pp 156–221

    Google Scholar 

  • Hartung W, Leport L, Ratcliffe RG, Sauter A, Duda R, Turner NC (2002) Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soils. Plant Soil 240:191–199

    Article  CAS  Google Scholar 

  • Jangir MM, Kashyap JS, Vani B, Chowdhury S (2015) The role of cyanobacteria in agriculture. Journal of Agroecology and Natural Resource Management 2:345–350

    Google Scholar 

  • Jangir MM, Vani B, Chowdhury S (2019) Analysis of seven putative Na+/H+ antiporters of Arthrospira platensis NIES-39 using transcription profiling and in silico studies: an indication towards alkaline pH acclimation. Physiol Mol Biol Plants 25:1175–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeanjean R, Matthijs HCP, Onana B, Michel Havaux M, Joset F (1993) Exposure of the cyanobacterium Synechocystis PCC 6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant Cell Physiol 34:1073–1079

    CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Kana R, Prásil O, Komárek O, Papageorgiou GC, Govindjee (2009) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). Biochim Biophys Acta 1787:1170–1178

    Article  PubMed  CAS  Google Scholar 

  • Karsten U, Klimant I, Holst G (1996) A new in vivo fluorimetric technique to measure growth of adhering phototrophic microorganisms. Appl Environ Microb 62:237–243

    Article  CAS  Google Scholar 

  • Kirilovsky D, Kaňa R, Prášil O (2014) Mechanisms modulating energy arriving at reaction centers in Cyanobacteria. In: Demmig-Adams B, Garab G, Adams III W, Govindjee (ed) Advances in photosynthesis and respiration. Springer, Dordrecht, pp 471–501

    Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53

    Article  CAS  Google Scholar 

  • Kishi M, Toda T (2018) Carbon fixation properties of three alkalihalophilic microalgal strains under high alkalinity. J Appl Phycol 30:401–410

    Article  CAS  Google Scholar 

  • Lao K, Glazer AN (1996) Ultraviolet-B photodestruction of a light harvesting complex. Proc Natl Acad Sci 93:5258–5263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee H, Noh Y, Hong SJ, Lee H, Kim DM, Cho BK, Lee CG, Choi HK (2020) Photosynthetic pigment production and metabolic and lipidomic alterations in the marine cyanobacteria Synechocystis sp. PCC 7338 under various salinity conditions. J Appl Phycol. https://doi.org/10.1007/s10811-020-02273-3

  • Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot 68:66–74

    Article  CAS  Google Scholar 

  • Lu C, Vonshak A (1999) Characterization of PS II photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytol 141:231–239

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Torzilo G, Vonshak A (1999) Kinetic response of photosystem II photochemistry in cyanobacterium Spirulina platensis to high salinity is characterized by two distinct phases. Aust J Plant Physiol 26:283–292

    CAS  Google Scholar 

  • MacKinney G (1991) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    Article  Google Scholar 

  • Mohanty N, Murthy SDS, Mohanty P (1987) Reversal of heat induced alterations in photochemical activities in wheat primary leaves. Photosynth Res 14:259–267

    Article  PubMed  CAS  Google Scholar 

  • Mohanty P, Vani B, Jogadhenu SSP (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Natureforsch 57:836–842

    Article  CAS  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224

    Article  PubMed  CAS  Google Scholar 

  • Moura KAF, Lizieri C, Wittig Franco M, Vieira Vaz MGM, Araújo WL, Convey P, Barbosa FAR (2019) Physiological and thylakoid ultrastructural changes in cyanobacteria in response to toxic manganese concentrations. Ecotoxicology 28:1009–1021

    Article  PubMed  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  PubMed  CAS  Google Scholar 

  • Nagao R, Yokono M, Ueno Y, Jiang TY, Shen JR, Akimoto S (2020) pH-induced regulation of excitation energy transfer in the cyanobacterial photosystem I tetramer. J Phys Chem B 124:1949–1954

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2005) Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. Photosynth Res 84:1–7

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Ishitani M, Takabe T, Rai AK, Takabe T (1995) Synechococcus sp. PCC 7942 transformed with Escherichia coli bet genes produces betaine and acquires resistance to salt stress. Plant Physiol 107:703–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parbel A, Scheer H (2000) Model for the phycobilisome rod with interlocking disks based on domain-weighted linker-polypeptide sequence homologies of Mastigocladus laminosus. Int J Photoenergy 2:31–40

    Article  CAS  Google Scholar 

  • Peng YL, Gao ZW, Gao Y, Liu GF, Sheng LX, Wang DL (2008) Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. J Integr Plant Biol 50:29–39

    Article  PubMed  CAS  Google Scholar 

  • Petersen FH (1996) Water testing and interpretation. In: Reed DW (ed) Water, media and nutrition. Ball Publishing, Batavia, pp 31–49

    Google Scholar 

  • Putty-Reddy S, Pogoryelov D, Kovács L, Garab G, Murthy SD (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Bio 38:481–485

    Google Scholar 

  • Radi AA, Abdel-Wahab DA, Hamada AM (2012) Evaluation of some bean lines tolerance to alkaline soil. J Biol Earth Sci 2:18–27

    Google Scholar 

  • Ramaraj R, Dah-Wei Tsai D, Chen PH (2015) Biomass of algae growth on natural water medium. J Photoch Photobio B 142:124–128

    Article  CAS  Google Scholar 

  • Reuter W, Muller C (1993) Adaptation of the photosynthetic apparatus of cyanobacteria to light and CO2. J Photochem Photobiol B Biol 21:3–27

    Article  CAS  Google Scholar 

  • Ritchie RJ, Larkum AWD (2012) Modelling photosynthesis in shallow algal production ponds. Photosynthetica 50:481–500

    Article  CAS  Google Scholar 

  • Sabat SC, Mohanty P (1989) Characterization of heat-stress induced stimulation of photosystem I electron transport activity in Amaranthus chloroplasts: effect of cations. J Plant Physiol 133:686–691

    Article  CAS  Google Scholar 

  • Scheldeman P, Baurain D, Bouhy R, Scott M, Mühling M, Whitton BA, Belay A, Wilmotte A (1999) Arthrospira (‘Spirulina’) strains from four continents are resolved into only two clusters, based on amplified ribosomal DNA restriction analysis of the internally transcribed spacer. FEMS Microbiol Lett 172:213–222

    Article  PubMed  CAS  Google Scholar 

  • Schubert H, Hagemann M (1990) Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 71:169–172

    Article  CAS  Google Scholar 

  • Schubert H, Fulda S, Hagemann M (1993) Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6083. J Plant Physiol 142:291–295

    Article  CAS  Google Scholar 

  • Stoitchkova K, Zsiros O, Jávorfi T, Páli T, Andreeva A, Gombos Z, Garab G (2007) Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Thermo-optic effect. Biochim Biophys Acta 1767:750–756

    Article  PubMed  CAS  Google Scholar 

  • Subhin VV, Murthy SDS, Karapetyan NV, Mohanty P (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophys Acta 1060:28–36

    Article  Google Scholar 

  • Summerfield TC, Sherman LA (2008) Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 74:5276–5284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  PubMed  CAS  Google Scholar 

  • Tamary E, Kiss V, Nevo R, Adam Z, Bernát G, Rexroth S, Rögner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta 1817:319–327

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new molecular mechanisms. FEMS Microbiol Rev 104:119–190

    Article  CAS  Google Scholar 

  • Tikkanen M, Aro EM (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochimica et Biophysica Acta 1817:232–238

  • Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M, Nurmi M, Suorsa M, Danielsson R, Mamedov F, Styring S, Aro EM (2008) Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochimica et Biophysica Acta 1777:425–432

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima M, Aikawa S, Yamagishi T, Kondo A, Kawai H (2015) A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39. J Appl Phycol 27:2191–2202

    Article  PubMed  CAS  Google Scholar 

  • Verma K, Mohanty P (2000) Alterations in the structure of phycobilisomes of the cyanobacterium, Spirulina platensis in response to enhanced Na+ level. World J Microbiol Biotechnol 16:795–798

    Article  CAS  Google Scholar 

  • Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420

    Article  Google Scholar 

  • Vonshak A, Chanawongse L, Bunnag B, Tanticharoen M (1995) Physiological characterization of Spirulina platensis isolates: response to light and salinity. Plant Physiol 14:161–166

    Google Scholar 

  • Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth Res 116:265–276

    Article  PubMed  CAS  Google Scholar 

  • Whipker BE, Bailey DA, Nelson PV, Fonteno WC, Hammer PA (1996) A novel approach to calculate acid additions for alkalinity control in greenhouse irrigation water. Commun Soil Sci Plant Anal 27:959–976

    Article  CAS  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    Article  PubMed  CAS  Google Scholar 

  • Yang CW, Wang P, Li CY, Shi DC (2008) Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica 46:107–114

    Article  CAS  Google Scholar 

  • Yin ZP, Zhang H, Zhao Q, Yoo MJ, Zhu N, Yu JL, Yu JJ, Guo SY, Miao YC, Chen SX, Qin Z, Dai SJ (2019) Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora. Plant Soil 437:137–158

    Article  CAS  Google Scholar 

  • Zeng MT, Vonshak A (1998) Adaptation of Spirulina platensis to salinity stress. Comp Biochem Physiol 120:113–118

    Article  Google Scholar 

Download references

Acknowledgments

Monika M. Jangir acknowledges the financial support from the Department of Science & Technology, Government of India in the form of DST-INSPIRE fellowship. The authors wish to thank BITS, Pilani, for providing infrastructural facilities.

Funding

Monika M. Jangir received financial support from the Department of Science & Technology, Government of India in the form of DST-INSPIRE fellowship from December 2013 to 2018.

Author information

Authors and Affiliations

Authors

Contributions

B. Vani conceived the original idea. B. Vani and Shibasish Chowdhury supervised the findings and experiments of this work. Monika M. Jangir performed the experimental works, literature surveys, and initial manuscript writing. All authors equally provided critical feedback and helped shape the research, analysis, and final manuscript.

Corresponding authors

Correspondence to Shibasish Chowdhury or Vani Bhagavatula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangir, M.M., Chowdhury, S. & Bhagavatula, V. Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis. Int Microbiol 24, 219–231 (2021). https://doi.org/10.1007/s10123-021-00160-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-021-00160-6

Keywords

Navigation