Skip to main content
Log in

Predicting subsidence of cohesive and granular soil layers reinforced by geosynthetic

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Subsidence can result from the collapse of underground cavities. The impact of such subsidence on existing structures and infrastructures is generally dramatic. Geosynthetic reinforcement (GSY) is an attractive mitigation solution that can be used to reduce this impact. This paper focuses on the mitigation solutions over existing cavities mainly on the GSY mitigation method. A large-scale physical model (1-g) is used to study the subsidence mechanisms and to estimate the efficacy of GSY for both cohesive and granular overlying soils. The results show that the presence of GSY reduces the ground movement due to the cavity progress toward surface, even under significant overload (traffic, localised foundation, etc.). The deformation of the GSY and the scenario for ground surface movement (subsidence or sinkhole) depend on both the soil type and overload intensity. The experimental results are compared to the analytical solutions proposed to design the GSY for cohesive and granular soils. In particular, the influence of the vertical stress distribution acting on the GSY is investigated. Different geometries of stress distribution are proposed for granular soils as a function of the loading mode (self-weight or localised overload). For cohesive soils, the action of the collapsed soil on the GSY sheet is found to be well estimated by considering the effect of a simplified system composed of two well localised punctual forces. The analytical and experimental results obtained are rather similar, proving the relevance of the analytical models in predicting the behaviour of reinforced soil layers taking into consideration the real stress distribution deduced from the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

c (Pa):

Cohesion of the soil

C e (%):

Expansion coefficient of the soil

D (m):

Size of the cavity at the GSY level

D 50 (m):

Mean diameter of the soil particles

D S (m):

Surface subsidence diameter

d (m):

Complementary length of the GSY so that 2 l + 2d is equal to the final length of the GSY over the cavity

d S (m):

Magnitude of the vertical surface displacement

f(x) (m):

GSY vertical deflexion (displacement)

fmax (m):

GSY maximum vertical deflexion (displacement)

fmax exp (m):

Experimental GSY maximum vertical deflexion (displacement)

fmax ana (m):

Analytical GSY maximum vertical deflexion (displacement)

H (m):

Height of the soil layer over the cavity

J (N/m):

Tensile stiffness of the GSY

K (−):

Earth pressure coefficient

Ka (−):

Active earth pressure coefficient

∆L (m):

Total increase of the length of GSY over the cavity

l1 (m):

Width of the zone on which the load is applied on the soil surface

l2 (m):

Distance between the two punctual loads P acting on the GSY

F (N/m):

Punctual load applied on the GSY defined by meter length

p (N/m2):

Vertical uniform pressure acting on the soil surface above the cavity

q 0 (N/m2):

Vertical uniform pressure acting on the GSY in the anchorage zones

S m:

Maximum vertical displacement observed on the soil surface

q(x) (N/m2):

Vertical uniform load distribution acting on the GSY over the cavity

q1 (N/m2):

Maximal vertical load acting on the GSY for each load distribution

r:

Constant defined as \(r = \sqrt {q_{0} \,(\tan \,\delta_{i} \, + \,\tan \delta_{s} )\,/\,(J\,U_{0} )}\)

SF:

Fontainebleau Sand soil

SK:

Fontainebleau Sand + Kaolin soil

TA (N/m):

Tensile force to be mobilized in the GSY anchorage areas

T(x) (N/m):

Tensile force in the GSY above the cavity

TH (N/m):

Horizontal component of the tensile force in the part of the GSY above the cavity

TV(x) (N/m):

Vertical component of the tensile force in the part of the GSY above the cavity

Tmax (N/m):

Maximal tensile force acting on the GSY sheet

U 0 (m):

Displacement value required to mobilize the maximum shear stress at the soil – GSY interface

U A (m):

Horizontal relative displacement at the soil – GSY interface at the edge of the cavity

w(x) (m):

Vertical displacement of the soil surface

z(x) (m):

Vertical displacement of the GSY

α:

Constant defined as \(\alpha \, = \,U_{A} /U_{0} {\text{ if }}U_{A} \le U_{0} {\text{ and }}\alpha = {\text{1 if }}U_{A} > U\)

δ i (°):

Lower friction angle of the soil-GSY interface

δ s (°):

Upper friction angle of the soil-GSY interface

β (−):

Tangent of the inclination angle of the GSY at the edge of the cavity \(\beta \, = \,\frac{dz(x = D/2)}{{dx}}\)

ε (x) (%):

T ensile strain in the GSY above the cavity

εW (%):

Initial strain of the sheet due to its initial ripples in the GSY above the cavity

σvg (N/m2):

Vertical stress applied on GSY calculated using Terzaghi’s equation

τ0 (N/m2):

Shear resistance of the GSY interfaces with both the soil above and below the GSY in cas the normal stress is \({q}_{0}\) \(\tau_{0} = q_{0} \,(\tan \,\delta_{i} \, + \,\tan \delta_{s} )\)

γ (N/m3):

Density of the soil unit weight

ϕ (°):

Soil internal friction angle of the soil

References

  • Abbas Q, Chungsik Y (2017) Effect of Geogrid on Sinkhole Formation induced Ground Collapse Prevention. 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, pp 2465–2468. https://www.issmge.org/uploads/publications/1/45/06-technical-committee-17-tc211-02.pdf. Accessed 8 July 2020

  • Abdelouhab A, Al Heib M, Pinon C (2018) Sécurisation d’un secteur d’une ancienne carrière souterraine par géosynthétique de très haute résistance (1800 kN/m). Journée Nationales de Géotechnique et de Géologie de l’Ingénieur, Marne -La-Vallée. https://www.ifsttar.fr/collections/ActesInteractifs/AII3/byTopic.html. Accessed 25 November 2020

  • Al Heib M, Didier C, Masrouri F (2010) Improving short- and long-term stability of underground gypsum mine using partial and total backfill. Rock Mech Rock Eng 43:447–461. https://doi.org/10.1007/s00603-009-0066-9

    Article  Google Scholar 

  • Al Heib M, Emeriault F, Caudron M, Nghiem L, Hor B (2013) Large-scale soil–structure physical model (1-g)-assessment of structure damages. Int J Phys Model Geotech 13:138–152

    Google Scholar 

  • Al Heib M, Hassoun M, Villard P, Emeriault F, Farhat A (2020) Subsidence prediction of reinforced soil layer by geosynthetic using large-scale 1g physical model. Proc IAHS 382:721–726

    Article  Google Scholar 

  • Ast W, Sobolewski J, Haberland J, (2001) Final design of an overbridging for railways endangered by cavities at Groebers. Landmarks in earth reinforcement. Proceedings of the international symposium on earth reinforcement. Fukuoka Japan, H. Ochiai et el. eds, Balkema 2: 191–196

  • Balland C, Al Heib M, Didier C (2009) Monitoring the long-term stability and sinkhole of shallow underg round cavities using micro-seismic technique: gypsum mine (Jura, France) American Geophysical Union, Fall Meeting 2009, abstract id. S23B-1759

  • Blivet JC, Khay M, Villard P, Gourc JP et al (2000) Experiment and design of geosynthetic reinforcement to prevent localised sinkholes. GeoEng2000, international conference on geotechnical and geological engineering 1–6

  • Boussaid K (2005) Intermediate soils for physical modeling: application to shallow foundations. Dissertation, Ecole Centrale de Nantes and Université de Nantes (in French)

  • Briançon L, Villard P (2008) Design of geosynthetic-reinforced platforms spanning localized sinkholes. Geotext Geomembr 26:416–428

    Article  Google Scholar 

  • Brinkmann R, Parise M, Dye D (2008) Sinkhole distribution in a rapidly developing urban environment: Hillsborough county, tampa bay area. Fla Eng Geol 99:169–184. https://doi.org/10.1016/j.enggeo.2007.11.020

    Article  Google Scholar 

  • BS8006 (2010) Standards publication code of practice for strengthened/reinforced soils and other fills. ISBN, 940005429 1–21

  • Chalak C, Briançon L, Villard P (2019) Coupled numerical and experimental analyses of load transfer mechanisms in granular-reinforced platform overlying cavities. Geotext Geomembr 47:587–597

    Article  Google Scholar 

  • Chevalier B, Combe G, Villard P (2012) Experimental and discrete element modelling studies of the trapdoor problem: influence of the macro-mechanical frictional parameters. Acta Geotech 7:15–39

    Article  Google Scholar 

  • Closson D, Karaki NA, Klinger Y, Hussein MJ (2005) Subsidence and sinkhole hazard assessment in the Southern Dead Sea Area, Jordan 2005. Pure Appl Geophys 162:221–248. https://doi.org/10.1007/s00024-004-2598-y

    Article  Google Scholar 

  • Cooper AH, Calow RC (1998) Avoiding Gypsum Geohazards: Guidance for Planning and Construction. WC/98/5. British Geological Survey, Nottingham, UK. http://nora.nerc.ac.uk/id/eprint/14146/1/Cooper_Callow_1998_DIFID_Gypsum_and_planning_WC_98_005_COL.pdf. Accessed 8 July 2020

  • Cooper AH, Saunders JM (2002) Road and bridge construction across gypsum karst in England. Eng Geol 65:217–223

    Article  Google Scholar 

  • Crilly M (2001) Analysis of a database of subsidence damage. Structural Survey 19:7–15

    Article  Google Scholar 

  • da Silva Burke TS, Elshafie MZEB (2020) Geosynthetic-reinforcement soils above voids: observation of soil and geosynthetic deformation mechanisms. Article in press, Geotextile and Geomembrane

    Google Scholar 

  • Delmas Ph, Gourc JP (2017) Geosynthetics in transport infrastructures, the positive input of old case histories. Marraekech, Morocco GeoAfrica 2017 Conference 17–55

  • Delmas P, Villard P, Huckert A (2015) Short and long term design of geosynthetic reinforcement structure over soil subsidence: taking into account safety. 10ème rencontres géosynthétiques: France. pp 1–22. https://www.cfg.asso.fr/sites/default/files/files/cd-rom-2015/RG2015%20pp%20013.pdf. Accessed 8 July 2020

  • EBGEO (2011) Recommendations for design and analysis of earth structures using geosynthetic reinforcements-EBGEO. German Geotechnical Society Berlin.https://onlinelibrary.wiley.com/doi/book/10.1002/9783433600931. Accessed 8 July 2020

  • Edmonds C (2018) Five decades of Settlement and subsidence. Q J Eng Geol Hydrogeol 51:4

    Article  Google Scholar 

  • Feng SJ, Ai SG, Chen HX (2017) An analytical method for predicting load acting on geosynthetic overlying voids. Geotext Geomembr 45:570–579

    Article  Google Scholar 

  • Feng WQ, Li C, Yin JH, Chen J, Liu K (2019) Physical model study on the clay–sand interface without and with geotextile separator. Acta Geotech 14:2065–2081. https://doi.org/10.1007/s11440-019-00763-4

    Article  Google Scholar 

  • Galve JP, Remondo J, Gutiérrez F (2011) Improving sinkhole hazard models incorporating magnitude–frequency relationships and nearest neighbor analysis. Geomorphology 134:157–170

    Article  Google Scholar 

  • Galve JP, Gutiérrez F, Guerrero J, Alonso J, Diego I (2012) Application of risk, cost–benefit and acceptability analyses to identify the most appropriate geosynthetic solution to mitigate sinkhole damage on roads. Eng Geol 145–146:65–77

    Article  Google Scholar 

  • Garnier J, Gaudin C, Springman SM et al (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Model Geotech 3:1–23

    Google Scholar 

  • Giroud JP, Bonaparte R, Beech FF, Gross BA (1995) Design layer: geosynthetic systems overlying voids. Geotext Geomembr 1:11–50

    Google Scholar 

  • Gombert P, Orsat J, Mathon D, Alboresha R, Al Heib M, Deck O (2014) Rôle des effondrements karstiques sur les désordres survenus sur les digues de Loire dans le Val d’Orléans (France). Bull Eng Geol Environ. https://doi.org/10.1007/s10064-014-0594-8

    Article  Google Scholar 

  • Gongyu L, Wanfang Z (1999) Sinkholes in karst mining areas in China and some methods of prevention. Eng Geol 52:45–50

    Article  Google Scholar 

  • Gourc JP, Villard P (2000) Reinforcement by membrane effect: application to embankments on soil liable to subsidence. Proceedings of the 2nd Asian geosynthetics conference 1:55–72

  • Gutiérrez F, Cooper AH, Johnson KS (2008) Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Env Geol 53:1007–1022. https://doi.org/10.1007/s00254-007-0728-4

    Article  Google Scholar 

  • Gutiérrez F, Parise M, De Waele J, Ourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth-Sci Rev 138:61–88

    Article  Google Scholar 

  • Hassoun M (2019) Modélisation physique du renforcement par géosynthétique des remblais granulaires et cohésifs sur cavités. Dissertation, Université Grenoble Alpes (in French)

  • Hassoun M, Villard P, Al Heib M, Emeriault F (2018) Soil reinforcement with geosynthetic for localized subsidence problems: Experimental and analytical analysis. Int J of Geomechanics ASCE 18:10

    Article  Google Scholar 

  • Huckert A, Villard P, Briançon L, Auray G (2015) Approche expérimentale du dimensionnement d’une couche de sol traité renforcée par géosynthétique sur cavités potentielles. 10ème Colloque francophone sur les Géosynthétiques, Rencontres Géosynthétiques France, pp 89–97 (In French)

  • Huckert A, Briançon L, Villard P, Garcin P (2016) Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Experimental and analytical approaches. Geotext Geomembr 44:442–456

    Article  Google Scholar 

  • Hutchinson DJ, Phillips C, Cascante G (2002) Risk considerations for crown pillar stability assessment for mine closure planning. Geotechn Geol Eng 20:41–64. https://doi.org/10.1023/A:1013852722768

    Article  Google Scholar 

  • IFSTTAR (2014) Le diagnostic de stabilité des carrières souterraines abandonnées, guide méthodlogique: Collection Environnment, les risques naturels. (In French)

  • Ineris (2007) Mise en sécurité des cavités souterraines d'origine anthropique: surveillance: traitement. https://www.ineris.fr/sites/ineris.fr/files/contribution/Documents/Guide_carrieres.pdf (In French)

  • Ineris (2019) Post-mining hazard evaluation and mapping in France. https://www.ineris.fr/sites/ineris.fr/files/contribution/Documents/Ineris-Guide_Aleas_miniers_VA-Web_C03.pdf

  • Jones CJFP, Cooper AH (2005) Road construction over voids caused by active gypsum dissolution, with an example from Ripon, North Yorkshire, England. Environ Geol 48:384–394

    Article  Google Scholar 

  • Kleinhans I, Van Rooy JL (2016) Guidelines for sinkhole and subsidence rehabilitation based on generic geological models of a dolomite environment on the East Rand, South Africa. J Afr Earth Sc 117:86–101

    Article  Google Scholar 

  • Lamont-Black J, et al. (2001) Risk of subsidence due to evaporite solution: a European prediction management scheme. Final Report to European commission under framework IV ENV-CT9700603

  • Leparmentier AM (2013) Les risques liés aux cavités, l’exemple de la région Parisienne. CFGI: SGF: CNAM. https://www.geosoc.fr/(In French)

  • Li X, Xiao S, Tang H, Peng J (2017) A GIS-based monitoring and early warning system for cover-collapse sinkholes in karst terrane in Wuhan China. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2017-22

    Article  Google Scholar 

  • Malinowska AA, Witkowski WT, Hejmanowski R, Chang L, Leijen FJ, Hanssen RF (2019) Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng Geol. https://doi.org/10.1016/j.enggeo.2019.105336

    Article  Google Scholar 

  • Ozdemir A (2015) Investigation of sinkholes spatial distribution using the weights of evidence method and GIS in the vicinity of Karapinar (Konya, Turkey). Geomorphology 245:40–50

    Article  Google Scholar 

  • Parise M (2012) A present risk from past activities: sinkhole occurrence above underground quarries. Carbonat Evap 27(2):109–118. https://doi.org/10.1007/s13146-012-0088-3

    Article  Google Scholar 

  • Parise M, Vennari C (2013) A chronological catalogue of sinkholes in Italy: the first step toward a real evaluation of the sinkhole hazard.” In proceedings of the 13th multidisciplinary. Conference on sinkholes and the. Engineering and environmental impacts of karst, Carlsbad 383–392

  • Pham MT, Briançon L, Dias D, Abdelouhab A (2018) Investigation of load transfer mechanisms in granular platforms reinforced by geosynthetics above cavities. Geotext Geomembr 46:611–624

    Article  Google Scholar 

  • Poorooshasb HB (2002) Subsidence evaluation of geotextile-reinforced gravel mats bridging a sinkhole. Geosynth Int 9:24

    Article  Google Scholar 

  • Popa H, Gaudin O, Garnier J, Thorel L, Pouya A, Reiffsteck P (2003) Interaction fondation superficielle-paroi de soutènement : modélisation expérimentale numérique. Fondsup 2003, symposium international sur les fondations superficiels, Paris 1,1 (In French)

  • Potts VJ, Zdravkovic L (2008) Assessment of BS8006:1995 design method for reinforced fill layers above voids, 4th European Geosynthetics conference, Edinburg 7

  • Reuter F, Stoyan D (1993) Sinkholes in carbonate, sulphate, and chloride karst regions: Principles and problems of engineering geological investigations and predictions, with comments for the construction and mining industries. In Beck B F (ed) Applied karst geology. Proceedings of the fourth multidisciplinary conference on sinkholes and the engineering and environmental impacts of karst, Panama City/Florida 3–25

  • Sartain N, Mian J, O’Riordan N, Storry R (2011) Case study on the assessment of sinkhole risk for the, development of infrastructure over karstic ground, ISGSR 2011: Vogt, Schuppener, Straub and Bräu (eds) - © 2011 Bundesanstalt für Wasserbau ISBN 978-3-939230-01-4

  • Schwerdt S, Mexer N, Paul A (2004) Die bemessung von geokunststoffbewehrungen zur ueberbrueckung von erdeinbruechen (BGE-Verfahren)/The design of geosynthetic reinforcements for protection against surface collapse into underground voids. Bauingenieur, 79. (In German)

  • Shukla SK (2009) Sivakugan N (2009) Technical note: a general expression for geosynthetic strain due to defelection. Geosynthet Int 16:6

    Article  Google Scholar 

  • Sowers GF (1996) Building on Sinkholes. ASCE Press, New York

    Book  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. John Wiley and Sons, New York, NY

    Book  Google Scholar 

  • Theron A, Kemp J, Kleynhans W, Turnbull T (2016) Detection of sinkhole precursors through sar interferometry: radar and geological considerations. GRSL-01085-2016

  • Thierry P, Prunier-Leparmentier AM, Lembezat C, Vanoudheusden E, Vernoux JF (2009) 3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: the Paris example (France). Eng Geol 105:51–64 (ff10.1016/j.enggeo.2008.12.010ff. ffhal-00514427f)

    Article  Google Scholar 

  • Thomsen C, Christopherson R (2010) Encounter geosystems: interactive explorations of earth using google earth. New York

  • Thornbush MJ (2017) Part 1: contemporary challenges and current solutions in sinkhole occurrence and mitigation. J Geol Geophys 6:3. https://doi.org/10.4172/2381-8719.1000287

    Article  Google Scholar 

  • Van Eekelen SJM, Bezuijen A, Van Tol AF (2013) An analytical model for arching in piled embankments. Geotext Geomembr 39:78–102

    Article  Google Scholar 

  • Viana PMF, Bueno BS, Costa YD (2008) A simplified method to predict vertical displacements, deformations and tensile stresses in geosynthetics overlying voids, first pan American geosynthetics conference and exhibition, 2008. Cancun, Mexico, p 9

    Google Scholar 

  • Villard P, Briançon L (2008) Design of geosynthetic-reinforcements for platforms subjected to localized sinkholes. Can Geotech J 45:196–209

    Article  Google Scholar 

  • Villard P, Huckert A, Briançon L (2016) Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Numerical approach and design. Geotext Geomembr 44:381–395

    Article  Google Scholar 

  • Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer, Chichester

    Google Scholar 

  • Weary DJ (2015) The cost of karst subsidence and sinkhole collapse in the United States compared with other natural hazards, proceedings of the fourteenth multidisciplinary conference, Rochester, Minn.: national cave and karst research institute, symposium 5, Carlsbad, N. Mex 433–445 https://doi.org/10.5038/9780991000951.1062

  • Wu PC, Yin JH, Feng WQ, Chen WB (2019) Experimental study on geosynthetic-reinforced sand fill over marine clay with or without deep cement mixed soil columns under different loadings. Underground Space 4:340–347. https://doi.org/10.1016/j.undsp.2019.03.001

    Article  Google Scholar 

Download references

Funding

The authors funded by ADEME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Al Heib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Heib, M., Hassoun, M., Emeriault, F. et al. Predicting subsidence of cohesive and granular soil layers reinforced by geosynthetic. Environ Earth Sci 80, 70 (2021). https://doi.org/10.1007/s12665-020-09350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09350-3

Keywords

Navigation