Skip to main content
Log in

GaAsBi Quantum Dots for 1.55 μm Laser Diode

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Bi incorporations can reduce the bandgap of GaAs1-xBix. With a Bi content of 10.5%, GaAsBi is predicted to emit light at 1.55 μm. However, high Bi incorporation is difficult for material growth and deteriorates the optical property of GaAsBi. In this work, a GaAsBi quantum dot (QD)/InAlAs structure on InP platform is proposed to fabricate 1.55 μm laser diodes. Strain distributions and band structures are calculated with different Bi contents and QD sizes using finite element method. High Bi contents and large QD sizes are beneficial for achieving long wavelengths. GaAsBi QD/InAlAs structures with a low Bi content of 5.6% and proper QD sizes, such as a diameter of 30 nm and a height of 6 nm, can emit light at 1.55 μm. The proposed structure can be realized by migration enhanced epitaxy and droplet epitaxy and provides a feasible way for fabricating GaAsBi based 1.55 μm laser diodes applied in fiber-optic communications.

Graphic Abstract

The emission wavelength of GaAsBi QDs with different sizes and Bi contents

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Oe, K., Okamoto, H.: New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37, 1283–1285 (1998)

    Article  Google Scholar 

  2. Yoshimoto, M., et al.: Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42, 10 (2003)

    Article  Google Scholar 

  3. Zhang, Y., Mascarenhas, A., Wang, L.W.: Similar and dissimilar aspects of III−V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)

    Article  Google Scholar 

  4. Alberi, K., et al.: Valence band anticrossing in GaBixAs1-x. Appl. Phys. Lett. 91(5), 053505 (2007)

    Article  Google Scholar 

  5. Usman, M., et al.: Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys. Rev. B 84(24), 245202 (2011)

    Article  Google Scholar 

  6. Broderick, C.A., et al.: Band engineering in dilute nitride and bismide semiconductor lasers. Semicond. Ence Technol. 27(9), 2777–2783 (2012)

    Google Scholar 

  7. Yoshida, J., et al.: Temperature dependence of GaAs1-xBix band gap studied by photoreflectance spectroscopy. Jpn. J. Appl. Phys. 42(2A), 371 (2003)

    Article  CAS  Google Scholar 

  8. Zayan, A., Stevens, M., Vandervelde, T.E.: GaAsBi alloys for photovoltaic and thermophotovoltaic applications. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, p. pp. 2839-2843 (2016)

  9. Wu, X., et al.: 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. Acs Photonics 4, 1322–1326 (2017)

    Article  CAS  Google Scholar 

  10. Lewis, R.B., et al.: GaAs1-xBix light emitting diodes. J. Cryst. Growth 311(7), 1872–1875 (2009)

    Article  CAS  Google Scholar 

  11. Tominaga, Y., Oe, K., Yoshimoto, M.: Low temperature dependence of oscillation wavelength in GaAs1-xBix laser by photo-pumping. Appl. Phys. Express 3(6), 062201 (2010)

    Article  Google Scholar 

  12. Fuyuki, T., et al.: Long-wavelength emission in photo-pumped GaAs1-xBix laser with low temperature dependence of lasing wavelength. Appl. Phys. Lett. 103(20), 1–4 (2013)

    Article  Google Scholar 

  13. Liu, X., et al.: Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41 μm. Photonics Res. 7(5), 508 (2019)

    Article  CAS  Google Scholar 

  14. Lewis, R.B., Masnadi-Shirazi, M., Tiedje, T.: Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 101(8), 963 (2012)

    Article  Google Scholar 

  15. Butkutė, R., et al.: Multi-quantum well Ga (AsBi)/GaAs laser diodes with more than 6% of bismuth. Electron. Lett. 50(16), 1155–1157 (2014)

    Article  Google Scholar 

  16. Fuyuki, T., et al.: Electrically pumped room-temperature operation of GaAs1−xBixlaser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express 7(8), 082101 (2014)

    Article  Google Scholar 

  17. Kim, H., et al.: Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing. J. Appl. Phys. 123(11), 113102 (2018)

    Article  Google Scholar 

  18. Ludewig, P.N.K., Hossain, N., et al.: Electrical injection Ga (AsBi)/(AlGa) as single quantum well laser. Appl. Phys. Lett. 102(24), 242115 (2013)

    Article  Google Scholar 

  19. Taojie, Z., et al.: Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges. AIP Adv. 8(7), 075306 (2018)

    Article  Google Scholar 

  20. Petroff, P.M., Denbaars, S.P.: MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures. Superlattices Microstruct. 15(1), 15 (1994)

    Article  CAS  Google Scholar 

  21. Nötzel, R., Kozen, A.T.J., et al.: TOPICAL REVIEW: Self-organized growth of quantum-dot structures. Semicond Ence Technol 11(1–8), 1365–1379 (1996)

    Article  Google Scholar 

  22. Xie, Y.H., et al.: Semiconductor surface roughness: dependence on sign and magnitude of bulk strain. Phys. Rev. Lett. 73(22), 3006 (1994)

    Article  Google Scholar 

  23. Lin, S.D., Lee, C.P.: Self-assembled GaAs antidots growth in InAs matrix on (100) InAs substrate. Physica E 25(4), 335–338 (2005)

    Article  CAS  Google Scholar 

  24. Lee, E.H., Song, J.D., Kim, S.Y., et al.: Self-assembled growth of GaAs anti quantum dots in InAs matrix by migration enhanced molecular beam epitaxy. J. Nanosci. Nanotechnol. 12(2), 1480 (2012)

    Article  CAS  Google Scholar 

  25. Lee, E.H., Song, J.D., Yoon, J.J., et al.: Formation of self-assembled large droplet-epitaxial GaAs islands for the application to reduced reflection. J. Appl. Phys. 113(15), 984 (2013)

    Article  Google Scholar 

  26. Song, J.D., et al.: Influence of arsenic during indium deposition on the formation of the wetting layers of InAs quantum dots grown by migration enhanced epitaxy. J. Appl. Phys. 96, 4122–4125 (2004)

    Article  CAS  Google Scholar 

  27. Cho, N.K., et al.: Comparison of structural and optical properties of InAs quantum dots grown by migration-enhanced molecular-beam epitaxy and conventional molecular-beam epitaxy. Appl. Phys. Lett. 88, 133104 (2006)

    Article  Google Scholar 

  28. Nemcsics, A.: Quantum dots prepared by droplet epitaxial method. In: Stavrou, V.N. (ed.) Quantum Dots Theory and Applications. IntechOpen, London (2015)

    Google Scholar 

  29. Grundmann, M., Stier, O., Bimberg, D.: InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52(16), 11969–11981 (1995)

    Article  CAS  Google Scholar 

  30. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  CAS  Google Scholar 

  31. Cicek, B., et al.: Strained-germanium nanostructures for infrared photonics. ACS Nano 8(4), 3136–3151 (2014)

    Article  Google Scholar 

  32. Batool, Z., et al.: The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111(11), 2245 (2012)

    Article  Google Scholar 

  33. Fluegel, B., et al.: Giant spin-orbit bowing in GaAs 1–x Bi x. Phys. Rev. Lett. 97(6), 067205 (2006)

    Article  CAS  Google Scholar 

  34. Ferhat, M., Zaoui, A.: Structural and electronic properties of III-V bismuth compounds. Phys. Rev. B Condens. Matter 73(11), 115107 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

L. Zhang acknowledges supports by the National Natural Science Foundation of China (Grant No. 61904106) and Shanghai Sailing Program (Grant No. 19YF1435300).

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 61904106) and Shanghai Sailing Program (Grant No. 19YF1435300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyao Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, L., Zhang, Z. et al. GaAsBi Quantum Dots for 1.55 μm Laser Diode. Electron. Mater. Lett. 17, 181–187 (2021). https://doi.org/10.1007/s13391-020-00262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00262-9

Keywords

Navigation