Skip to main content

Advertisement

Log in

Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Land cover classification is one of the most important applications of POLSAR images. In this paper, a hybrid biogeography-based optimization support vector machine (HBBOSVM) has been introduced to classify POLSAR images of RADARSAT 2 in band C acquired from San Francisco, USA. The main purpose of this classification is to minimize the number of features and maximize classification accuracy. The proposed method consists of three main steps: preprocessing, feature selection and classification. As preprocessing, radiometric calibration, speckle reduction and feature extraction have been performed. In the proposed HBBO, the combination of onlooker bee of artificial bee colony (ABC) and migration operator of biogeography-based optimization has been applied in order to optimal feature selection. Then, SVM has been used to classify the pixels into specific labels of land-covers. The ground truth samples have been generated by google earth image, Pauli RGB image, high resolution image and national land cover database (NLCD 2006). The performance of HBBOSVM has been compared with BBOSVM, ABCSVM, particle swarm optimization support vector machine (PSOSVM) and the results of previous studies. In addition, the performance of HBBO is evaluated upon 20 well-known benchmark problems. According to the obtained results, the overall accuracy and average accuracy of HBBOSVM are 96.01% and 93.37% respectively which is the best result in comparison with other results. The HBBOSVM has better performance than other algorithms in terms of overall accuracy, kappa coefficient, average accuracy, convergence trend, and stability. In addition, the HBBO can be considered as a successful meta-heuristic for benchmark problems. This paper displays that the combined approach of optimization and machine learning methods provides powerful results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, P., Samat, A., Waske, B., Liu, S., Li, Z.: Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 105, 38–53 (2015)

    Article  Google Scholar 

  2. Samat, A., Gamba, P., Liu, S., Miao, Z., Li, E., Abuduwaili, J.: Quad-PolSAR data classification using modified random forest algorithms to map halophytic plants in arid areas. Int. J. Appl. Earth Obs. Geoinf. 73, 503–521 (2018)

    Google Scholar 

  3. Salehi, M., Sahebi, M.R., Maghsoudi, Y.: Improving the accuracy of urban land cover classification using Radarsat-2 PolSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(4), 1394–1401 (2013)

    Article  Google Scholar 

  4. Hänsch, R., Hellwich, O.: Skipping the real world: classification of PolSAR images without explicit feature extraction. ISPRS J. Photogramm. Remote Sens. 140, 122–132 (2018)

    Article  Google Scholar 

  5. Li, S., Wu, H., Wan, D., Zhu, J.: An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowl.-Based Syst. 24(1), 40–48 (2011)

    Article  Google Scholar 

  6. Yang, H.C., Zhang, S.B., Deng, K.Z., Du, P.J.: Research into a feature selection method for hyperspectral imagery using PSO and SVM. J. China Univ. Min. Technol. 17(4), 473–478 (2007)

    Article  Google Scholar 

  7. Qi, C., Zhou, Z., Sun, Y., Song, H., Hu, L., Wang, Q.: Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification. Neurocomputing. 220, 181–190 (2017)

    Article  Google Scholar 

  8. Xie, F., Li, F., Lei, C., Yang, J., Zhang, Y.: Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification. Appl. Soft. Comput. 75, 428–440 (2019)

    Article  Google Scholar 

  9. Medjahed, S.A., Saadi, T.A., Benyettou, A., Ouali, M.: Gray wolf optimizer for hyperspectral band selection. Appl. Soft. Comput. 40, 178–186 (2016)

    Article  Google Scholar 

  10. Ghosh, A., Datta, A., Ghosh, S.: Self-adaptive differential evolution for feature selection in hyperspectral image data. Appl. Soft. Comput. 13(4), 1969–1977 (2013)

    Article  Google Scholar 

  11. Wang, M., Wu, C., Wang, L., Xiang, D., Huang, X.: A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowl.-Based Syst. 168, 39–48 (2019)

    Article  Google Scholar 

  12. Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., Granger, J.E.: Fisher linear discriminant analysis of coherency matrix for wetland classification using PolSAR imagery. Remote Sens. Environ. 206, 300–317 (2018)

    Article  Google Scholar 

  13. Liu, F., Shi, J., Jiao, L., Liu, H., Yang, S., Wu, J., Yuan, J.: Hierarchical semantic model and scattering mechanism based PolSAR image classification. Pattern Recogn. 59, 325–342 (2016)

    Article  Google Scholar 

  14. Qi, Z., Yeh, A.G.O., Li, X., Zhang, X.: A three-component method for timely detection of land cover changes using polarimetric SAR images. ISPRS J. Photogramm. Remote Sens. 107, 3–21 (2015)

    Article  Google Scholar 

  15. Maghsoudi, Y., Collins, M., Leckie, D.G.: Polarimetric classification of boreal forest using nonparametric feature selection and multiple classifiers. Int. J. Appl. Earth Obs. Geoinf. 19, 139–150 (2012)

    Google Scholar 

  16. Shokrollahi, M., Ebadi, H.: Improving the accuracy of land cover classification using fusion of polarimetric SAR and hyperspectral images. J. Indian Soc. Remote Sens. 44(6), 1017–1024 (2016)

    Article  Google Scholar 

  17. Leardi, R.: Genetic algorithms in feature selection. In: Devillers, J. (ed.) Genetic algorithms in molecular modeling, pp. 67–86. Academic Press, London (1996)

    Chapter  Google Scholar 

  18. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  Google Scholar 

  19. Leardi, R., Gonzalez, A.L.: Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom. Intell. Lab. Syst. 41(2), 195–207 (1998)

    Article  Google Scholar 

  20. Somol, P., Pudil, P., Novovičová, J., Paclık, P.: Adaptive floating search methods in feature selection. Pattern Recogn. Lett. 20(11–13), 1157–1163 (1999)

    Article  Google Scholar 

  21. Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by Bayesian network-based optimization. Artif. Intell. 123(1–2), 157–184 (2000)

    Article  Google Scholar 

  22. Inza, I., Merino, M., Larrañaga, P., Quiroga, J., Sierra, B., Girala, M.: Feature subset selection by genetic algorithms and estimation of distribution algorithms: a case study in the survival of cirrhotic patients treated with TIPS. Artif. Intell. Med. 23(2), 187–205 (2001)

    Article  Google Scholar 

  23. Zhang, H., Sun, G.: Feature selection using Tabu search method. Pattern Recogn. 35(3), 701–711 (2002)

    Article  Google Scholar 

  24. Chen, X.W.: An improved branch and bound algorithm for feature selection. Pattern Recogn. Lett. 24(12), 1925–1933 (2003)

    Article  Google Scholar 

  25. Zhu, F., Guan, S.: Feature selection for modular GA-based classification. Appl. Soft Comput. 4(4), 381–393 (2004)

    Article  Google Scholar 

  26. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Inf. Fusion. 6(1), 83–98 (2005)

    Article  Google Scholar 

  27. Paterlini, S., Krink, T.: Differential evolution and particle swarm optimisation in partitional clustering. Comput. Stat. Data Anal. 50(5), 1220–1247 (2006)

    Article  Google Scholar 

  28. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)

    Article  Google Scholar 

  29. Huang, C.L., Dun, J.F.: A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

    Article  Google Scholar 

  30. Nemati, S., Basiri, M.E., Ghasem-Aghaee, N., Aghdam, M.H.: A novel ACO–GA hybrid algorithm for feature selection in protein function prediction. Expert Syst. Appl. 36(10), 12086–12094 (2009)

    Article  Google Scholar 

  31. Vieira, S.M., Sousa, J.M., Runkler, T.A.: Two cooperative ant colonies for feature selection using fuzzy models. Expert Syst. Appl. 37(4), 2714–2723 (2010)

    Article  Google Scholar 

  32. Pourhabibi, T., Imani, M.B., Haratizadeh, S.: Feature selection on Persian fonts: a comparative analysis on GAA, GESA and GA. Procedia Comput. Sci. 3, 1249–1255 (2011)

    Article  Google Scholar 

  33. Kabir, M.M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39(3), 3747–3763 (2012)

    Article  Google Scholar 

  34. Vieira, S.M., Mendonça, L.F., Farinha, G.J., Sousa, J.M.: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. 13(8), 3494–3504 (2013)

    Article  Google Scholar 

  35. Nazir, M., Majid-Mirza, A., Ali-Khan, S.: PSO-GA based optimized feature selection using facial and clothing information for gender classification. J. Appl. Res. Technol. 12(1), 145–152 (2014)

    Article  Google Scholar 

  36. Sanz-García, A., Fernández-Ceniceros, J., Antonanzas-Torres, F., Pernia-Espinoza, A.V., Martinez-de-Pison, F.J.: GA-PARSIMONY: a GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace. Appl. Soft Comput. 35, 13–28 (2015)

    Article  Google Scholar 

  37. Hancer, E., Xue, B., Karaboga, D., Zhang, M.: A binary ABC algorithm based on advanced similarity scheme for feature selection. Appl. Soft Comput. 36, 334–348 (2015)

    Article  Google Scholar 

  38. Ghaemi, M., Feizi-Derakhshi, M.R.: Feature selection using forest optimization algorithm. Pattern Recogn. 60, 121–129 (2016)

    Article  Google Scholar 

  39. Sheikhpour, R., Sarram, M.A., Sheikhpour, R.: Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Appl. Soft Comput. 40, 113–131 (2016)

    Article  Google Scholar 

  40. Pashaei, E., Aydin, N.: Binary black hole algorithm for feature selection and classification on biological data. Appl. Soft Comput. 56, 94–106 (2017)

    Article  Google Scholar 

  41. Zhang, Y., Song, X.F., Gong, D.W.: A return-cost-based binary firefly algorithm for feature selection. Inf. Sci. 418, 561–574 (2017)

    Article  Google Scholar 

  42. Gunasundari, S., Janakiraman, S., Meenambal, S.: Multiswarm heterogeneous binary PSO using win-win approach for improved feature selection in liver and kidney disease diagnosis. Comput. Med. Imaging Graph. 70, 135–154 (2018)

    Article  Google Scholar 

  43. Prasad, Y., Biswas, K.K., Hanmandlu, M.: A recursive PSO scheme for gene selection in microarray data. Appl. Soft Comput. 71, 213–225 (2018)

    Article  Google Scholar 

  44. Tao, Z., Huiling, L., Wenwen, W., Xia, Y.: GA-SVM based feature selection and parameter optimization in hospitalization expense modeling. Appl. Soft Comput. 75, 323–332 (2019)

    Article  Google Scholar 

  45. García-Nieto, P.J., García-Gonzalo, E., Fernández, J.A., Muñiz, C.D.: Modeling of the algal atypical increase in La Barca reservoir using the DE optimized least square support vector machine approach with feature selection. Math. Comput. Simul. 166, 461–480 (2019)

    Article  Google Scholar 

  46. Engelbrecht, A.P., Grobler, J., Langeveld, J.: Set based particle swarm optimization for the feature selection problem. Eng. Appl. Artif. Intell. 85, 324–336 (2019)

    Article  Google Scholar 

  47. Yu, J.: Manifold regularized stacked denoising autoencoders with feature selection. Neurocomputing. 358, 235–245 (2019)

    Article  Google Scholar 

  48. Esfandiarpour-Boroujeni, I., Karimi, E., Shirani, H., Esmaeilizadeh, M., Mosleh, Z.: Yield prediction of apricot using a hybrid particle swarm optimization-imperialist competitive algorithm-support vector regression (PSO-ICA-SVR) method. Sci. Hortic. 257, 108756 (2019)

    Article  Google Scholar 

  49. Taradeh, M., Mafarja, M., Heidari, A.A., Faris, H., Aljarah, I., Mirjalili, S., Fujita, H.: An evolutionary gravitational search-based feature selection. Inf. Sci. 497, 219–239 (2019)

    Article  Google Scholar 

  50. Cao, L., Li, J., Zhou, Y., Liu, Y., Liu, H.: Automatic feature group combination selection method based on GA for the functional regions clustering in DBS. Comput. Methods Prog. Biomed. 183, 105091 (2020)

    Article  Google Scholar 

  51. Abdel-Basset, M., El-Shahat, D., El-henawy, I., de Albuquerque, V.H.C., Mirjalili, S.: A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst. Appl. 139, 112824 (2020)

    Article  Google Scholar 

  52. Abd Elaziz, M., Ewees, A.A., Ibrahim, R.A., Lu, S.: Opposition-based moth-flame optimization improved by differential evolution for feature selection. Math. Comput. Simul. 168, 48–75 (2020)

    Article  Google Scholar 

  53. Yazdani, S., Shanbehzadeh, J., Aminian, E.: Feature subset selection using constrained binary/integer biogeography-based optimization. ISA Trans. 52(3), 383–390 (2013)

    Article  Google Scholar 

  54. Srivastava, A., Ghosh, S., Anantharaman, N., Jayaraman, V.K.: Hybrid biogeography based simultaneous feature selection and MHC class I peptide binding prediction using support vector machines and random forests. J. Immunol. Methods. 387(1–2), 284–292 (2013)

    Article  Google Scholar 

  55. Tu, Q., Chen, X., Liu, X.: Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl. Soft Comput. 76, 16–30 (2019)

    Article  Google Scholar 

  56. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing. 172, 371–381 (2016)

    Article  Google Scholar 

  57. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  58. Gutierrez, J.C.T., Adamatti, D.S., Bravo, J.M.: A new stopping criterion for multi-objective evolutionary algorithms: application in the calibration of a hydrologic model. Comput. Geosci. 23(6), 1219–1235 (2019)

  59. Harb, A., Kassem, H., Ghorayeb, K.: Black hole particle swarm optimization for well placement optimization. Comput. Geosci. 24(6), 1979–2000 (2019)

  60. Lotfy, A., Kaveh, M., Mosavi, M.R., Rahmati, A.R.: An enhanced fuzzy controller based on improved genetic algorithm for speed control of DC motors. Analog Integr. Circ. Sig. Process. 105(2), 141–155 (2020)

  61. Kaveh, M., Kaveh, M., Mesgari, M.S., Paland, R.S.: Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm. Appl. Geomatics 12(3), 291–306 (2020)

  62. Kaveh, M., Mesgari, M.S., Khosravi, A.: Solving the local positioning problem using a four-layer artificial neural network. Eng. J. Geospatial Inf. Technol. 7(4), 21–40 (2020)

    Google Scholar 

  63. Kaveh, M., Mesgari, M.S.: Hospital site selection using hybrid PSO algorithm-case study: district 2 of Tehran. Sci-Res. Q. Geogr. Data (SEPEHR). 28(111), 7–22 (2019)

    Google Scholar 

  64. Kaveh, M., Mesgari, M.S.: Improved biogeography-based optimization using migration process adjustment: an approach for location-allocation of ambulances. Comput. Ind. Eng. 135, 800–813 (2019)

    Article  Google Scholar 

  65. Khishe, M., Mosavi, M.R., Kaveh, M.: Improved migration models of biogeography-based optimization for sonar dataset classification by using neural network. Appl. Acoust. 118, 15–29 (2017)

    Article  Google Scholar 

  66. Kaveh, M., Khishe, M., Mosavi, M.R.: Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network. Analog Integr. Circ. Sig. Process. 100(2), 405–428 (2019)

    Article  Google Scholar 

  67. Mosavi, M. R., Kaveh, M., & Khishe, M.: Sonar data set classification using MLP neural network trained by non-linear migration rates BBO. In: The fourth Iranian conference on engineering electromagnetic (ICEEM), pp. 1–5. (2016)

  68. Mosavi, M.R., Kaveh, M., Khishe, M., Aghababaee, M.: Design and implementation a sonar data set classifier by using MLP NN trained by improved biogeography-based optimization. In Proceedings of the Second National Conference on Marine Technology, pp. 1–6. (2016)

  69. Bansal, J.C., Farswan, P.: Wind farm layout using biogeography based optimization. Renew. Energy. 107, 386–402 (2017)

  70. Boddula, S., Eldho, T.I.: Groundwater management using a new coupled model of meshless local Petrov-Galerkin method and modified artificial bee colony algorithm. Comput. Geosci. 22(3), 657–675 (2018)

    Article  Google Scholar 

  71. Fattahi, H.: Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values. Comput. Geosci. 21(4), 665–681 (2017)

    Article  Google Scholar 

  72. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  73. Ben-Hur, A., & Weston, J. (2010). A user’s guide to support vector machines. In: Data mining techniques for the life sciences (pp. 223–239). Humana Press

  74. He, J., Mattis, S.A., Butler, T.D., Dawson, C.N.: Data-driven uncertainty quantification for predictive flow and transport modeling using support vector machines. Comput. Geosci. 23(4), 631–645 (2019)

    Article  Google Scholar 

  75. Tan, F., Luo, G., Wang, D., Chen, Y.: Evaluation of complex petroleum reservoirs based on data mining methods. Comput. Geosci. 21(1), 151–165 (2017)

    Article  Google Scholar 

  76. Deng, L., Yan, Y.N., Wang, C.: Improved POLSAR image classification by the use of multi-feature combination. Remote Sens. 7(4), 4157–4177 (2015)

    Article  Google Scholar 

  77. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4), 635–672 (2005)

    Article  Google Scholar 

  78. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  79. Mohammadi, R., Sahebi, M.R., Omati, M., Vahidi, M.: Synthetic aperture radar remote sensing classification using the bag of visual words model to land cover studies. Int. J. Geol. Environ. Eng. 12(9), 588–591 (2018)

    Google Scholar 

  80. Uhlmann, S., Kiranyaz, S.: Integrating color features in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 52(4), 2197–2216 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Kaveh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, O., Kaveh, M. Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning. Comput Geosci 25, 911–930 (2021). https://doi.org/10.1007/s10596-020-10030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-10030-1

Keywords

Navigation