Skip to main content
Log in

Role of the eastern subtropical North Pacific Ocean on the El Niño’s transition processes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We examine the transition processes of El Niño occurring in 1 year after using observations, a multi-century model simulation and atmospheric general circulation model (AGCM) experiments. One type is characterized by a quick transition from an El Niño event into a La Niña event in the following winter, and the other type involves a slow decay to an almost neutral state or a continuous El Niño event. While both the Indian and the Atlantic Oceans contribute to the El Niño’s transition processes, we further find that sea surface temperature (SST) conditions in the eastern subtropical North Pacific and the associated surface wind anomalies play important roles in determining the different types of El Niño’s transition processes through atmosphere–ocean coupled processes. In particular, northeasterly wind anomalies in the central subtropical North Pacific during the early spring, which is in consequence of atmosphere–ocean coupled processes, contribute to decreasing ocean heat content (OHC) anomalies and strengthening easterly wind anomalies in the central tropical Pacific. These anomalies lead up to a transition into a La Niña event in the following winter. On the contrary, weakening of the northeasterly wind and warm SST anomalies in the eastern subtropical North Pacific during the early spring are conducive to a neutral state or a continuous El Niño event in the subsequent winter. Similar transition processes are also found in a multi-century model simulation. By conducting idealized AGCM experiments, we also show that the anomalous SST in the eastern subtropical North Pacific during El Niño peak season may induce surface wind anomalies in the central tropical Pacific during El Niño onset season. These results provide potential precursors for predicting the occurrence of a La Niña event, a neutral state and an El Niño event 1 year after the occurrence of an El Niño event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231

    Google Scholar 

  • Anderson BT (2007) On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J Clim 20(8):1593–1599

    Google Scholar 

  • Anderson BT, Perez RC (2015) ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Clim Dyn 45(9–10):2309–2327

    Google Scholar 

  • Anderson BT, Perez RC, Karspeck A (2013) Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys Res Lett 40(6):1212–1216

    Google Scholar 

  • Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean, paper presented at Preprints, Eighth Symp. on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA, Amer. Meteor. Soc

  • Cai W, Wu L, Lengaigne M, Li T, McGregor S, Kug J-S, Yu J-Y, Stuecker MF, Santoso A, Li X (2019) Pantropical climate interactions. Science 363(6430):eaav4236

    Google Scholar 

  • Camargo SJ, Sobel AH (2005) Western North Pacific tropical cyclone intensity and ENSO. J Clim 18(15):2996–3006

    Google Scholar 

  • Chen M, Li T (2018) Why 1986 El Niño and 2005 La Niña evolved different from a typical El Niño and La Niña. Clim Dyn 51(11–12):4309–4327

    Google Scholar 

  • Chen M, Li T, Shen X, Wu B (2016) Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J Clim 29(6):2201–2220

    Google Scholar 

  • Chen L, Li T, Wang B, Wang L (2017) Formation mechanism for 2015/16 super El Niño. Sci Rep 7(1):2975

    Google Scholar 

  • Chen S, Yu B, Chen W, Wu R (2018) A Review of atmosphere–ocean forcings outside the Tropical Pacific on the El Niño–Southern Oscillation occurrence. Atmosphere 9(11):439

    Google Scholar 

  • Chiang JC, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158

    Google Scholar 

  • Choi K-Y, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim 26(23):9462–9476

    Google Scholar 

  • Chowdary J, Gnanaseelan C (2007) Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int J Clim 27(11):1421–1438

    Google Scholar 

  • DiNezio PN, Deser C (2014) Nonlinear controls on the persistence of La Niña. J Clim 27(19):7335–7355

    Google Scholar 

  • DiNezio PN, Deser C, Karspeck A, Yeager S, Okumura Y, Danabasoglu G, Rosenbloom N, Caron J, Meehl GA (2017) A 2 year forecast for a 60–80% chance of La Niña in 2017–2018. Geophys Res Lett 44(22):11–624

    Google Scholar 

  • Efron B (1992) Bootstrap methods: another look at the jackknife. Breakthroughs in statistics. Springer, Berlin, pp 569–593

    Google Scholar 

  • Frauen C, Dommenget D (2010) El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett. https://doi.org/10.1029/2010GL044444

  • Ham Y-G, Kug J-S, Park J-Y, Jin F-F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6(2):112–116

    Google Scholar 

  • Hong C-C, Li T, Chen Y-C (2010) Asymmetry of the Indian Ocean basinwide SST anomalies: roles of ENSO and IOD. J Clim 23(13):3563–3576

    Google Scholar 

  • Hu Z-Z, Kumar A, Xue Y, Jha B (2014) Why were some La Niñas followed by another La Niña? Clim Dyn 42(3–4):1029–1042

    Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H-M (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):1339–1360

    Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54(7):811–829

    Google Scholar 

  • Jiping C, Shaoyu Y, Qingchen C, Jiwei T (2002) A data analysis study on the evolution of the El Niño/La Niña cycle. Adv Atmos Sci 19(5):837–844

    Google Scholar 

  • Jourdain NC, Lengaigne M, Vialard J, Izumo T, Gupta AS (2016) Further insights on the influence of the Indian Ocean Dipole on the following year’s ENSO from observations and CMIP5 models. J Clim 29(2):637–658

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632

    Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):40–41–40–44

    Google Scholar 

  • Kug J-S, Ham Y-G (2012) Indian Ocean feedback to the ENSO transition in a multimodel ensemble. J Clim 25(20):6942–6957

    Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19(9):1784–1801

    Google Scholar 

  • Kug JS, Li T, An SI, Kang IS, Luo JJ, Masson S, Yamagata T (2006) Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM, Geophys Res Lett 33(9)

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515

    Google Scholar 

  • L’Heureux ML et al (2017) Observing and Predicting the 2015/16 El Niño. Bull Am Meteorol Soc 98(7):1363–1382. https://doi.org/10.1175/bams-d-16-0009.1

    Article  Google Scholar 

  • Larson S, Lee SK, Wang C, Chung ES, Enfield D (2012) Impacts of non-canonical El Niño patterns on Atlantic hurricane activity. Geophys Res Lett. https://doi.org/10.1029/2012GL052595

  • Lee S-K, Atlas R, Enfield D, Wang C, Liu H (2013) Is there an optimal ENSO pattern that enhances large-scale atmospheric processes conducive to tornado outbreaks in the United States? J Clim 26(5):1626–1642

    Google Scholar 

  • Lee SK, DiNezio PN, Chung ES, Yeh SW, Wittenberg AT, Wang C (2014a) Spring persistence, transition, and resurgence of El Niño. Geophys Res Lett 41(23):8578–8585

    Google Scholar 

  • Lee SK, Mapes BE, Wang C, Enfield DB, Weaver SJ (2014b) Springtime ENSO phase evolution and its relation to rainfall in the continental US. Geophys Res Lett 41(5):1673–1680

    Google Scholar 

  • Li T (1997) Phase transition of the El Niño–Southern Oscillation: a stationary SST mode. J Atmos Sci 54(24):2872–2887

    Google Scholar 

  • Li X, Li C, Ling J, Tan Y (2015) The relationship between contiguous El Niño and La Niña revealed by self-organizing maps. J Clim 28(20):8118–8134

    Google Scholar 

  • Liguori G, Di Lorenzo E (2018) Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys Res Lett 45(2):983–991

    Google Scholar 

  • Liguori G, Di Lorenzo E (2019) Separating the North and South Pacific Meridional Modes contributions to ENSO and tropical decadal variability. Geophys Res Lett 46(2):906–915

    Google Scholar 

  • Livezey RE, Chen W (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111(1):46–59

    Google Scholar 

  • McGregor S, Ramesh N, Spence P, England MH, McPhaden MJ, Santoso A (2013) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett 40(4):749–754

    Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283(5404):950–954

    Google Scholar 

  • McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett. https://doi.org/10.1029/2009GL038774

  • Neale RB, Chen C-C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque J-F (2010) Description of the NCAR community atmosphere model (CAM 50). NCAR Tech Note NCAR/TN-486 + STR 1(1):1–12

    Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Ocean 103(C7):14261–14290

    Google Scholar 

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteorol Soc Jpn 85(3):335–348

    Google Scholar 

  • Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22(1):177–192

    Google Scholar 

  • Ohba M, Watanabe M (2012) Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J Clim 25(9):3321–3335

    Google Scholar 

  • Okumura YM, Ohba M, Deser C, Ueda H (2011) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24(15):3822–3829

    Google Scholar 

  • Paek H, Yu JY, Qian C (2017) Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys Res Lett 44(4):1848–1856

    Google Scholar 

  • Park J-Y, Yeh S-W, Kug J-S, Yoon J (2013) Favorable connections between seasonal footprinting mechanism and El Niño. Clim Dyn 40(5–6):1169–1181

    Google Scholar 

  • Park J-H, Kug J-S, Li T, Behera SK (2018) Predicting El Niño beyond 1-year lead: effect of the Western Hemisphere warm pool. Sci Rep 8(1):14957

    Google Scholar 

  • Ren H-L, Jin F-F (2013) Recharge oscillator mechanisms in two types of ENSO. J Clim 26(17):6506–6523

    Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett. https://doi.org/10.1029/2009GL040048

  • Santoso A, Mcphaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys 55(4):1079–1129

    Google Scholar 

  • Taschetto AS, Gupta AS, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27(8):2861–2885

    Google Scholar 

  • Timmermann A, An S-I, Kug J-S, Jin F-F, Cai W, Capotondi A, Cobb KM, Lengaigne M, McPhaden MJ, Stuecker MF (2018) El Niño–southern oscillation complexity. Nature 559(7715):535–545

    Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923–3926

    Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16(16):2668–2675

    Google Scholar 

  • Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn 36(9–10):1881–1896

    Google Scholar 

  • Wang C, Wang X (2013) Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J Clim 26(4):1322–1338

    Google Scholar 

  • Wang B, Luo X, Yang Y-M, Sun W, Cane MA, Yeh S-W, Liu J (2019) Historical change of El Nino properties sheds light on future changes of extreme El Nino. Proc Natl Acad Sci 116(45):22512–22517

    Google Scholar 

  • Wu R, Wang B (2002) A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J Clim 15(22):3266–3279

    Google Scholar 

  • Yeh SW, Cai W, Min SK, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, An SI, Yim BY (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206

    Google Scholar 

  • Yun K-S, Ha K-J, Yeh S-W, Wang B, Xiang B (2015) Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Clim Dyn 44(7–8):1979–1992

    Google Scholar 

  • Yun K-S, Yeh S-W, Ha K-J (2019) Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming. Clim Dyn 52(3–4):1723–1738

    Google Scholar 

Download references

Acknowledgements

We appreciate to two anonymous reviewers who gave constructive comments. We also thank the National Center for Atmospheric Research for producing and making available the results from the CESM1 CAM5 BGC Large Ensemble pre-industrial run https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_BGC_LE.html We acknowledge using the SST data obtained from the Extended Reconstruction SST version 5 (ERSSTv5) https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html. The monthly SLP and wind stress data are obtained from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) Reanalysis 1 https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html. The oceanic potential temperature can also be obtained from the NCEP Global Ocean Data Assimilation System (GODAS) https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html. This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2018-03211.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Wook Yeh or Hyun-Su Jo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2084 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, SW., Jo, HS., Hyun, SH. et al. Role of the eastern subtropical North Pacific Ocean on the El Niño’s transition processes. Clim Dyn 56, 1285–1301 (2021). https://doi.org/10.1007/s00382-020-05530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05530-w

Navigation