Skip to main content
Log in

The Concept of Bird Species: Theory and Practice

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

As it has presently become evident, reproductive isolation can no longer be considered as the leading criterion for estimating the species limits, but it is still used for determining the status of the majority of morphs. The presence/absence of hybridization between individuals is not directly related to the degree of their evolutionary insularity. Hybridization can result in the origin of new morphs including those that have species status. The application of phylogenetic methods is justified in reconstructing the relation links within complex groups including the morphs of various evolutionary levels (from geographical races to “good” species), the relationships between which are exacerbated by hybridogenous polymorphism and/or the hybridization origins of their populations. Taking into account both new data and new conceptions, we suggest genuine interrelated definitions of concepts such as species, subspecies, and semispecies in birds. The definitions are based on two main criteria: biological, i.e., an evaluation of the reproductive relations of the particular morphs with each other, and phylogenetic, i.e., an evaluation of their evolutionary age and kinship. The main feature of a species as an evolutionary entity should be considered through its stability in time even when its reproductive isolation is periodically broken. Geographic intraspecies races show sustainable variations of different degrees, but they have no reproductive isolation; they breed upon contact and form intergradation zones. They are taxonomically denoted as subspecies. Descriptions of new subspecies are viable to the limits that reflect the species’ natural geographic structure to the fullest extent. For the young morphs that have reached the level of species insularity in the course of evolution, it seems appropriate to restore a semispecies category. Semispecies show significant morphological differences and distinguished ecological particularities, as a rule, but they are connected to closely related morphs by gene flows in contact zones. Distinguishing this category is not regulated by the International Code of Zoological Nomenclature and, as splitter tendencies prevail in modern systematics, semispecies are more often equated to species; i.e., they have binominal names. We propose to denote the attribution of a semispecies to a particular species group (superspecies) in parentheses between genus and species names. Thus, it would become possible to outline natural complexes and avoid a groundless increase in the taxonomic statuses of morphs in the stage of development. Representatives of distant phylogenetic lines (morphs that separated historically long ago) are not to be considered as semispecies even in the cases of their reproductive isolation being broken and a steady hybridization existing between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abramson, N.I., Molecular and conventional phylogenetics: on the way to mutual understanding, in Sovremennye problemy biologicheskoi sistematiki (Modern Problems of Biological Taxonomy), Tr. Zool. Inst. Ross. Akad. Nauk, Pril., 2013, pp. 219–229.

  2. Arnaiz-Villena, A., Guillen, J., Ruiz-del-Valle, V., Lowy, E., Zamora, J., Varela, P., Stefani, D., and Allende, L.M., Phylogeography of crossbills, bullfinches, grosbeaks, and rosefinches, Cell. Mol. Life Sci., 2001, vol. 58, pp. 1–8.

    Article  Google Scholar 

  3. Aver’yanov, A.O. and Lopatin, A.V., Macrosystematics of placental mammals: the current state of the problem, Zool. Zh., 2014, vol. 97, no. 7, pp. 798–813.

    Google Scholar 

  4. Bakhtadze, G.B., Distribution of pigments in feathers of yellow wagtails (Motacilla flava L., M. feldegg Mich., and M. lutea Gmel.) and their feathering color, Izv. Sev.-Kavkaz. Nauchn. Tsentra Vyssh. Shk., Ser. Estestv. Nauki, 1987, Rostov-on-Don, deposited at VINITI August 18, 1987, no. 1920.

  5. Bakhtadze, G.B. and Kazakov, B.A., Comparative analysis of nesting places of Motacilla flava, M. feldegg, and M. lutea yellow wagtails in the south of the European part of the USSR, Vestn. Zool., 1985, no. 5, pp. 55–59.

  6. Barani-Beiranvand, H., Aliabadian, M., Irestedt, M., Qu, Y., Darvish, J., Szekely, T., van Dijk, R.E., and Ericson, P.G.P., Phylogeny of penduline tits inferred from mitochondrial and microsatellite genotyping, J. Avian Biol., 2017, vol. 48, pp. 932–940.

    Article  Google Scholar 

  7. Barrera-Guzman, A.O., Aleixo, A., Shawkey, M.D., and Weir, J.T., Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 115, pp. e218–e225. https://doi.org/10.1073/pnas.1717319115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Becker, J., Nachtigallen Luscinia megarhynchos, Sprosser L. luscinia und ihre Hybriden im Raum Frankfurt (Oder)—weitere Ergebnisse einer langjahrigen Beringungsstudie, Vogelwarte, 2007, vol. 45, no. 1, pp. 15–26.

    Google Scholar 

  9. Benkman, C.W., Parchman, T.L., and Mezquida, E.T., Patterns of coevolution in the adaptive radiation of crossbills, Ann. N.Y. Acad. Sci., 2010, vol. 1206, pp. 1–16.

    Article  PubMed  Google Scholar 

  10. Blinov, V.N., Blinova, T.K., and Kryukov, A.P., Interaction of hooded crow and carrion crow (Corvus cornix L. and C. corone L.) in the hybridization and sympatry zone: zone structure and possible isolation factors, in Gibridizatsiya i problema vida u pozvonochnykh (Hybridization and the Species Problem in Vertebrates), Trudy Zool. Muz. Mosk. Gos. Univ., 1993, vol. 30, pp. 97–117.

  11. Borkin, L.Ya. and Litvinchuk, S.N., Hybridization, speciation, and taxonomy of animals, in Sovremennye problemy biologicheskoi sistematiki (Modern Problems of Biological Taxonomy), Tr. Zool. Inst. Ross. Akad. Nauk, 2013, suppl. 2, pp. 83–139.

  12. Brelsford, A., Hybrid speciation in birds: allopatry more important than ecology?, Mol. Ecol., 2011, vol. 20, pp. 3705–3707. https://doi.org/10.1111/j.1365-294X.2011.05230.x

    Article  PubMed  Google Scholar 

  13. Brelsford, A., Milá, B., and Irwin, D.E., Hybrid origin of Audubon’s warbler, Mol. Ecol., 2011, vol. 20, no. 11, pp. 2380–2389.

    Article  PubMed  Google Scholar 

  14. Clegg, S.M., Degnan, S.M., Moritz, C., Estoup, A., Kikkawa, J., and Owens, I.P., Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird, Evolution, 2002, vol. 56, no. 10, pp. 2090–2099.

    Article  PubMed  Google Scholar 

  15. Clements, J.F., Schulenberg, T.S., Iliff, M.J., Roberson, D., Fredericks, T.A., Sullivan, B.L., and Wood, C.L., Clements checklist of birds of the world, 2017. http://www.birds.cornell.edu/clementschecklist.

  16. Coyne, J.A. and Orr, H.A., Speciation, Sinauer Associates, 2004.

    Google Scholar 

  17. Dement’ev, G.P., Polnyi opredelitel’ ptits SSSR: Vorob’inye (Complete Identification Guide to Birds of the USSR: Passeriformes), Moscow, 1937, vol. 4.

  18. Edelaar, P., Van Eerde, K., and Terpstra, K., Is the nominate subspecies of the common crossbill Loxia c. curvirostra polytypic? II. Differentiation among vocal types in functional traits, J. Avian Biol., 2008, vol. 39, pp. 108–115.

    Article  Google Scholar 

  19. Frankham, R., Genetic adaptation to captivity in species conservation programs, Mol. Ecol., 2008, vol. 17, no. 1, pp. 325–333.

    Article  PubMed  Google Scholar 

  20. Garnett, S.T. and Christidis, L., Taxonomy anarchy hampers conservation. The classification of complex organisms is in chaos, Nature, 2017, no. 546, pp. 25–27.

  21. Grebel’nyi, S.D., Ivanova, N.Yu., and Nefedova, E.A., Exchange between the nuclear and mitochondrial genomes (according to the analysis of nuclear and cytoplasmic copies of mitochondrial genes—numts and cymts)), Tsitologiya, 2018, vol. 60, no. 11, pp. 899–902.

    Article  Google Scholar 

  22. Le Gros, A., Clergeau, Ph., Zuccon, D., Cornette, R., Mathys, B., and Samadi, S., Invasion history and demographic processes associated with rapid morphological changes in the red-whiskered bulbul established on tropical islands, Mol. Ecol., 2016, vol. 25, no. 21, pp. 5359–5376.

    Article  PubMed  Google Scholar 

  23. Haffer J., The history of species concepts and species limits in ornithology, in Avian Systematics and Taxonomy, Monk, J.F., Ed., Bull. British Ornithologists Club. Centenary Supplement, 1992, vol. 112A, pp. 107–158.

  24. Haffer, J., Species concepts and species limits in ornithology, in Handbook of the Birds of the World, vol. 4: Sandgrouse to Cuckoos, del Hoyo, J., Elliot, A., and Sargatal, J., Eds., Lynx, 1997, pp. 11–24.

  25. Hailer, F., Kutschera, V.E., Hallstrom, B.M., Klassert, D., Fain, S.R., Leonard, J.A., Arnason, U., and Janke, A., Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage, Science, 2012, vol. 336, no. 6079, pp. 344–357. https://doi.org/10.1126/science.1216424

    Article  CAS  PubMed  Google Scholar 

  26. Haring, E., Gamauf, A., and Kryukov, A., Phylogeographic patterns in widespread corvid birds, Mol. Phylogenet. Evol., 2007, vol. 45, no. 3, pp. 840–862.

    Article  CAS  PubMed  Google Scholar 

  27. Harr, B. and Price, T., Speciation: clash of the genomes, Curr. Biol., 2012, vol. 22, no. 24, pp. R1044–R1046. https://doi.org/10.1016/j.cub.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  28. Helbig, A.J., Knox, A.G., Parkin, D.T., Sangster, G., and Collinson, J.M., Guidelines for assigning species rank, Ibis, 2002, vol. 144, no. 3, pp. 518–525.

    Article  Google Scholar 

  29. HBW and BirdLife International Illustrated Checklist of the Birds of the World, vol. 1: Non-passerines, del Hoyo, J. and Collar, N.J., Eds., Lynx, 2014.

  30. HBW and BirdLife International Illustrated Checklist of the Birds of the World, vol. 2: Passerines, del Hoyo, J. and Collar, N.J., Eds., Lynx, 2016.

  31. Hubbard, J.P., The relationships and evolution of Dendroica coronata complex, Auk, 1969, vol. 86, pp. 393–432.

    Article  Google Scholar 

  32. Irwin, D.E., Rubtsov, A.S., and Panov, E.N., Mitochondrial introgression and replacement between yellowhammers (Emberiza citrinella) and pine buntings (Emberiza leucocephalos) (Aves: Passeriformes), Biol. J. Linn. Soc., 2009, vol. 98, pp. 422–438.

    Article  Google Scholar 

  33. Ivushkin, V.E., Genus Pyrrhula Brisson, 1760: composition, distribution, and features of ecology, Russ. Ornitol. Zh., 2015, vol. 24, no. 1143, pp. 1679–1738.

    Google Scholar 

  34. Johnson, N.K., Remsen, J.V., and Cicero, C., Resolution of the debate over species concepts in ornithology: a new comprehensive biologic species concept, in Proceedings of the 22nd International Ornithological Congress, Durban, South Africa, August 1998, Adams, N.J. and Slotow, R.H., Eds., Johannesburg, 1999, pp. 1470–1482.

  35. Kalinin, E.D., Opaev, A.S., Solov’eva, E.N., Golovina, M.V., Marova, I.M., and Redkin, Ya.A., A comprehensive analysis of the variability of Palaearctic forms of European stonechats, in Vseross. ornitol. kongr. (g. Tver’, Rossiya, 29 yanvarya–4 fevralya 2018). Tezisy dokladov (All-Russia Ornithological Congress (Tver, Russia, January 29–February 4, 2018), Abstracts of Papers), Tver, 2018, pp. 139–140.

  36. Koblik, E.A. and Arkhipov, V.Yu., Avifauna of countries of Northern Eurasia within the former Soviet Union, in Zoologicheskie issledovaniya (Zoological Research), Moscow, 2014, no. 14.

  37. Koblik, E.A., Redkin, Ya.A., and Arkhipov, V.Yu., Spisok ptits Rossiiskoi Federatsii (Checklist of Birds of the Russian Federation), Moscow, 2006.

  38. Koblik, E.A., Arkhipov, V.Yu., Volkov, S.V., Mosalov, A.A., and Redkin, Ya.A., Himalayas—the “key” to understanding the taxonomic diversity of Asian warblers (Phylloscopidae, Aves), in Rossiiskie gimalaiskie issledovaniya: vchera, segodnya, zavtra (Russian Himalayan Studies: Yesterday, Today, and Tomorrow), St. Petersburg, 2017, pp. 173–178.

  39. Kováts, D., Végvári, Z., and Varga, Z., Morphological patterns of a nightingale population in a contact zone of Luscinia megarhynchos and L. luscinia, Acta Zoologica Academiae Scientiarum Hungaricae, 2013, vol. 59, no. 2, pp. 157–170.

    Google Scholar 

  40. Kryukov, A.P., Modern concepts of the species and the role of Russian biologists in their development, Probl. Evol., 2003, vol. 5, pp. 31–39.

    Google Scholar 

  41. Kryukov, A.P. and Blinov, V.N., Interaction of hooded and carrion crows (Corvus cornix L. and C. corone L.) in the sympatry and hybridization zone: is there selection against hybrids?, Zh. Obshch. Biol., 1981, vol. 42, no. 1, pp. 128–135.

    Google Scholar 

  42. Kryukov, A.P., Spiridonova, L.N., Mori, S., Arkhipov, V.Yu., Redkin, Ya.A., Goroshko, O.A., Lobkov, E.G., and Haring, E., Deep phylogeographic breaks in magpie Pica pica across the Holarctic: concordance with bioacoustics and phenotypes, Zool. Sci., 2017, vol. 34, no. 3, pp. 185–200. https://doi.org/10.2108/zs160119

    Article  CAS  Google Scholar 

  43. Lamichhaney, S., Han, F., Webster, M.T., Andersson, L., Grant, R.B., and Grant, P.R., Rapid hybrid speciation in Darwin’s finches, Science, 2017. https://doi.org/10.1126/science.aao4593

  44. Lavrenchenko, L.A., Hybridogenic speciation in mammals: illusion or reality?, Zh. Obshch. Biol., 2013, vol. 74, no. 4, pp. 253–267.

    Google Scholar 

  45. Lewontin, R.C. and Birch, L.C., Hybridization as a source of variation for adaptation to new environments, Evolution, 1966, vol. 20, no. 3, pp. 315–336.

    Article  CAS  PubMed  Google Scholar 

  46. Liebers, D., De Knijffa, P., and Helbig, A.J., The herring gull complex is not a ring species, Proc. R. Soc. B: Biol. Sci., 2004, vol. 271, pp. 893–901.

    Article  Google Scholar 

  47. Lukyanchuk, O.A., Marova, I.M., and Redkin, Ya.A., Geographical variability of morphological and acoustic signs of the north populations of the long tailed tit Aegithalos caudatus (Passeriformes, Aegithalidae), Biol. Bull. (Moscow), 2017, vol. 44, no. 9, pp. 1081–1089.

    Article  Google Scholar 

  48. Mallet, J., Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation, Phil. Transact. R. Soc., B: Biol. Sci., 2006, vol. 363, pp. 2971–2986.

    Google Scholar 

  49. Marova, I.M. and Shipilina, D.A., Hybrid zones in birds: morphological, bioacoustic, and genetic aspects, in XIV Mezhdunar. ornitol. konf. Severnoi Evrazii (Almaty, 18–24 avgusta 2015 g.), Doklady (Proc. XIV International Ornithological Conference of Northern Eurasia (Almaty, August 18–24, 2015), Reports), Almaty, 2015, pp. 373–395.

  50. Mayr, E., Systematics and the Origin of Species from the Viewpoint of a Zoologist, Columbia University Press, 1942.

    Google Scholar 

  51. Mayr, E., Methods and Principles of Systematic Zoology, New York: McGraw-Hill, 1953.

    Google Scholar 

  52. Mayr, E., Animal Species and Evolution, Cambridge, MA: Harvard Univ. Press, 1963.

    Google Scholar 

  53. Mayr, E., Populations, Species, and Evolution, Cambridge (Massachusetts): Harvard Univ., 1970.

    Google Scholar 

  54. Mayr, G., Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters, J. Zool. Syst. Evol. Res., 2008, vol. 46, no. 1, pp. 63–72.

    Google Scholar 

  55. McCarthy, E.M., Handbook of Avian Hybrids of the World, Oxford University Press, 2006.

  56. Mezhdunarodnyi kodeks zoologicheskoi nomenklatury (The International Code of Zoological Nomenclature), 4th ed., Moscow, 2004.

  57. Mikhailov, K.E., Typological interpretation of a “biological species” and the ways of stabilizing the near-species taxonomy of birds, Ornitologiya, 2003, vol. 30, pp. 9–24.

    Google Scholar 

  58. Mikhailov, K.E., Morphogenesis and ecogenesis in the evolution of birds: the lack of their identity and its consequences, in XIV Mezhdunar. ornitol. konf. Severnoi Evrazii (Almaty, 18–24 avgusta 2015 g.), Doklady (Proc. XIV International Ornithological Conference of Northern Eurasia (Almaty, August 18–24, 2015), Reports), Almaty, 2015, pp. 181–204.

  59. Mikhailov, K.E., The complexity of divergence and the species structure in birds, Tr. Menzbir. Ornitol. O-va (Moscow), 2017, no. 3, pp. 40–67.

  60. Mikhailov, K.E., Ecological races and the dual nature of reproductive isolation in birds: can near-species morphological and genetic taxonomy adequately display the multifaceted population divergence in neurologically complex organisms?, Russ. Ornitol. Zh., 2018, vol. 27, no. 1695, pp. 5581–5601.

  61. Milá, B. and Irwin, D.E., A cryptic contact zone between divergent mitochondrial DNA lineages in southwestern North America supports past introgressive hybridization in the yellow-rumped warbler complex (Aves: Dendroica coronata), Biol. J. Linn. Soc., 2011, vol. 103, no. 3, pp. 696–706.

    Article  Google Scholar 

  62. Miller, W., Schuster, S.C., Welch, A.J., Ratan, A., Bedoya-Reina, O.C., Zhao, F., Kim, H.L., et al., Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 36, pp. e2382–e2390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Millien, V., Morphological evolution is accelerated among island mammals, PLoS Biol., 2006, vol. 4, no. 10. e321. https://doi.org/10.1371/journal.pbio.0040321

    Article  PubMed  PubMed Central  Google Scholar 

  64. Murav’ev, I.V., On the problem of biology of the group of yellow wagtails in the Penza oblast, in Kraevedcheskie issledovaniya i problema ekologicheskogo obrazovaniya (Local Historian Research and the Problem of Environmental Education), Pensa, 1996, pp. 51–52.

  65. Murav’ev, I.V., Comparative ecology of closely related species as exemplified by the genus Motacilla L., Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1997.

  66. Murav’ev, I.V., Breeding of the group of “yellow” wagtails in the Penza oblast, in Ekologiya i okhrana okruzhayushchei sredy (Ecology and Environmental Protection), Ryazan, 1993, pp. 87–88.

    Google Scholar 

  67. Opaev, A.S., The main directions of divergence of cryptic species of birds (as exemplified by the Acrocephalus arundinaceus complex, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2010.

  68. Opaev, A.S., Redkin, Ya.A., Kalinin, E.D., and Golovina, M.V., Species limits in Northern Eurasian taxa of the common stonechats, Saxicola torquatus complex (Aves: Passeriformes, Muscicapidae), Vertebr. Zool., 2018, vol. 68, no. 3, pp. 199–211.

    Google Scholar 

  69. Pagel, M., Venditti, Ch., and Meade, A., Large punctuational contribution of speciation to evolutionary divergence at the molecular level, Science, 2006, vol. 314, pp. 119–121.

    Article  CAS  PubMed  Google Scholar 

  70. Panov, E.N., Gibridizatsiya i etologicheskaya izolyatsiya u ptits (Hybridization and Ethological Isolation in Birds), Moscow: Nauka, 1989.

  71. Panov, E.N., The species boundary and hybridization in birds, in Gibridizatsiya i problema vida u pozvonochnykh (Hybridization and the Problem of Species in Vertebrates), Sb. Tr. Zool. Muz. Mosk. Gos. Univ., 1993, vol. 30, pp. 53–96.

  72. Panov, E.N., Interspecific hybridization in birds: evolution in action, Priroda (Moscow, Russ. Fed.), 2001, no. 6, pp. 51–59.

  73. Panov, E.N., Sorokoputy (semeistvo Laniidae) mirovoi fauny. Ekologiya, povedenie, evolyutsiya (Shrikes (Family Laniidae) of the World Fauna: Ecology, Behavior, and Evolution), Moscow: Tov. Nauchn. Izd. KMK, 2008.

  74. Parchman, T.L., Benkman, C.W., and Britch, S.C., Patterns of genetic variation in the adaptive radiation of new world crossbills (Aves: Loxia), Mol. Ecol., 2006, vol. 15, no. 7, pp. 1873–1887.

    Article  CAS  PubMed  Google Scholar 

  75. Pavlinov, I.Ya., Vvedenie v sovremennuyu filogenetiku (kladogeneticheskii aspekt) (Introduction to Modern Phylogenetics (Cladogenetic Aspect)), Moscow, 2005.

  76. Pavlinov, I.Ya., The species problem in biology: the origins and the present, in Kontseptsii vida u gribov: novyi vzglyad na starye problemy (Materialy VIII vserossiiskoi mikologicheskoi shkoly-konferentsii) (Species Concepts in Fungi: A New Look at Old Problems, Proceedings of VIII All-Russia Mycological School-Conference)), Moscow: Mosk. Gos. Univ., 2017, pp. 5–19.

  77. Pavlinov, I.Ya., Osnovaniya biologicheskoi sistematiki: istoriya i teoriya (Fundamentals of Biological Taxonomy: History and Theory), Moscow: Tov. Nauchn. Izd. KMK, 2018.

  78. Pavlinov, I.Ya., Zveri Rossii: spravochnik-opredelitel’ (Animals of Russia: A Reference Guide), in 2 vols., Opredeliteli po flore i faune Rossii (Identification Guide to Flora and Fauna of Russia), Moscow: Tov. Nauchn. Izd. KMK, 2019, issue 14.

  79. Pavlinov, I.Ya. and Lyubarskii, G.Yu., Biologicheskaya sistematika: evolyutsiya idei (Biological Taxonomy: The Evolution of the Idea), Moscow, 2011.

  80. Pfander, P.V., The tragedy of the near-species taxonomy, Russ. Ornitol. Zh., 2018, vol. 27, no. 1558, pp. 301–335.

    Google Scholar 

  81. Piertney, S.W., Summers, R.W., and Marquiss, M., Microsatellite and mitochondrial DNA homogeneity among phenotypically diverse crossbill taxa in the UK, Proc. R. Soc. B: Biol. Sci., 2001, vol. 268, pp. 1511–1517.

    Article  CAS  Google Scholar 

  82. Politov, D.V. and Mudrik, E.A., Molecular genetic approaches to the analysis of intraspecific structure, microtaxonomy, and microevolution in birds, Zool. Issled., Moscow, 2018, no. 20, pp. 115–118.

  83. Portenko, L.A., Ptitsy SSSR (Birds of the USSR), Moscow: Akad. Nauk SSSR, 1960, part 4.

  84. Portenko, L.A., Geographic variation of rufous-throated thrush (Turdus ruficollis Pallas) and its taxonomic assessment, in Filogeniya i sistematika ptits (Phylogeny and Taxonomy of Birds), Tr. Zool. Inst. Akad. Nauk SSSR, 1981, vol. 102, pp. 72–109.

    Google Scholar 

  85. Potokina, E.K., Lebedeva, M.V., Ul’yanich, P.S., Levkoev, E.A., Volkov, V.A., and Zhigunov, A.V., Heteroplasmy and nuclear copies of mitochondrial genes (NUMTs) in the zone of introgressive hybridization of European spruce and Siberian spruce, in Genetika populyatsii: progress i perspektivy (Genetics of Populations: Progress and Prospects), Moscow, 2017, pp. 223–225.

  86. Price, T.D., Speciation in Birds, Greenwood Village, CO, 2008.

    Google Scholar 

  87. Rasmussen, P.C. and Anderton, J.C., Birds of South Asia. The Ripley Guide, Washington D.C. and Barcelona: Smitsonian Institution and Lynx Edicions, 2005, vols. 1–2.

    Google Scholar 

  88. Redkin, Ya.A., New concepts of the taxonomic structure of the “yellow wagtails” group, in Dostizheniya i problemy ornitologii Severnoi Evrazii na rubezhe vekov (Advances and Problems of Ornithology of Northern Eurasia at the Turn of the Century), Kazan, 2001, pp. 150–165.

    Google Scholar 

  89. Redkin, Ya.A., Taxonomic relationships of forms in evolutionarily young bird complexes on the example of the genus Motacilla L., 1785 (taxonomic revision of the subgenus Budytes), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2001a.

  90. Redkin, Ya.A., Semeistvo Tryasoguzkovye. Polnyi opredelitel’ ptits evropeiskoi chasti Rossii (Family Motacillidae. Complete Identification Guide to Birds of European Russia), Moscow: Fiton XXI, 2012, part 3.

  91. Redkin, Ya.A., Why it is necessary to continue purposefully collecting collection carcasses of birds on the territory of Russia and adjacent regions in the 21st century?, in IX Mezhdunar. konf. khranitelei ornitol. koll. “Ornitologicheskie kollektsii: iz proshlogo v budushchee,” Tezisy dokladov (IX International Conference of Ornithological Collection Keepers “Ornithological Collection: From the Past to the Future” (Moscow, October 12–16, 2015), Abstracts of Papers), Moscow, 2015, pp. 80–81.

  92. Redkin, Ya.A. and Konovalova, M.V., On the problem of reproductive relations between two forms of yellow-browed warbler Phylloscopus inornatus (Blyth, 1842) based on the analysis of external morphological traits and features of distribution, Russ. Ornitol. Zh., 2003, vol. 12, no. 247, pp. 1407–1430.

    Google Scholar 

  93. Red’kin, Ya.A. and Konovalova, M.V., On the taxonomy of yellow-browed warbler Phylloscopus inornatus sensu lato, based on the analysis of collection specimens (Aves: Sylviidae), Zoosyst. Rossica, 2004, vol. 13, no. 1, pp. 137–150.

    Google Scholar 

  94. Red’kin, Ya.A. and Konovalova, M.V., The eastern Asiatic races of Sitta europaea Linnaeus, 1758, in Systematic Notes on Asian Birds, no. 63, Zoologische Mededelingen Leiden, 2006, vol. 80, no. 15, pp. 241–261.

  95. Redkin, Ya.A., Arkhipov, V.Yu., Volkov, S.V., Mosalov, A.A., and Koblik, E.A., Species or not species? Controversial taxonomic interpretations of birds of Northern Eurasia, in XIV Mezhdunarodnaya ornitologicheskaya konferentsiya Severnoi Evrazii (Almaty, 18–24 avgusta 2015 g.) Doklady (Proceedings of XIV International Ornithological Conference of Northern Eurasia (Almaty, August 18–24, 2015)), Almaty, 2015, vol. 2, pp. 104–138.

  96. Redkin, Ya.A., Arkhipov, V.Yu., Volkov, S.V., Mosalov, A.A., and Koblik, E.A., Art oder keine Art? Strittige taxonomishe Ansichten zu den Vögeln Nord-Eurasiens, Ornithologische Mittelungen, 2016, vol. 68, nos. 11/12, pp. 327–354.

    Google Scholar 

  97. Rubtsov, A.S., Reproductive isolation and the concept of species in birds, Zool. Zh., 2015, vol. 94, no. 7, pp. 816–831.

    Google Scholar 

  98. Ryabitsev, V.K., Ptitsy Sibiri: spravochnik opredelitel’ (Birds of Siberia: A Handbook and Identification Guide), Moscow: Yekaterinburg, 2014.

  99. Sangster, G., Increasing numbers of bird species result from taxonomic progress, not тaxonomic inflation, Proc. R. Soc. B: Biol. Sci, 2009, vol. 276, pp. 3185–3191.

    Article  Google Scholar 

  100. Sangster, G., The application of species criteria in avian taxonomy and its implications for the debate over species concepts, Biol. Rev., 2014, vol. 89, no. 1, pp. 199–214.

    Article  PubMed  Google Scholar 

  101. Sangster G., Integrative taxonomy of birds: the nature and delimitation of species, in Bird Species. How They Arise, Modify and Vanish, Switzerland AG: Springer Nature, 2018, pp. 9–37.

  102. Song, H., Buhay, J.E., Whiting, M.F., and Crandall, K.A., Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 13486–13491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sotnikov, V.N., Ptitsy Kirovskoi oblasti i sopredel’nykh territorii (Birds of the Kirov Oblast and Adjacent Territories), vol. 2: Vorob’inoobraznye (Passerines), Kirov, 2006.

  104. Soubrier, J., Gower, G., Chen, K., et al., Early cave art and ancient DNA record the origin of European bison, Nat. Commun., 2016, vol. 7, pp. 1–6. https://doi.org/10.1038/ncomms13158

    Article  Google Scholar 

  105. Spiridonova, L.N. and Valchuk, O.P., A new case of recombination between the nuclear and mitochondrial genomes in the genus Calliope: a hypothesis of the origin of Calliope pectoralis, in Genetika populyatsii: progress i perspektivy (Genetics of Populations: Advances and Prospects), Moscow, 2017, pp. 274–275.

  106. Spiridonova, L.N., Redkin, Ya.A., Valchuk, O.P., and Kryukov, A.P., Nuclear mtDNA pseudogenes as a source of new variants of the mtDNA cytochrome b haplotypes: a case study of Siberian rubythroat Luscinia calliope (Muscicapidae, Aves), Russ. J. Genet., 2016, vol. 52, no. 9, pp. 952–968.

    Article  CAS  Google Scholar 

  107. Spiridonova, L.N., Valchuk, O.P., Redkin, Ya.A., Saito, T., and Kryukov, A.P., Phylogeography and demographic history of Siberian rubythroat Luscinia calliope, Russ. J. Genet., 2017, vol. 53, no. 8, pp. 885–902.

    Article  CAS  Google Scholar 

  108. Spiridonova, L.N., Valchuk, O.P., and Redkin, Ya.A., A new case of recombination between nuclear and mitochondrial genomes in the genus Calliope Gould, 1836 (Muscicapidae, Aves): the Hypothesis of Origin of Calliope pectoralis Gould, 1837, Russ. J. Genet., 2019, vol. 55, no. 1, pp. 89–99.

    Article  CAS  Google Scholar 

  109. Stepanyan, L.S., Sostav i raspredelenie ptits fauny SSSR. Vorob’inoobraznye Passeriformes (The Composition and Distribution of Birds of the Fauna of the USSR. Passeriformes), Moscow: Nauka, 1978.

  110. Stepanyan, L.S., Nadvidy i vidy-dvoiniki v avifaune SSSR (Superspecies and Sibling Species in the Avifauna of the USSR), Moscow: Nauka, 1983.

  111. Stepanyan, L.S., Konspekt ornitologicheskoi fauny Rossii i sopredel’nykh territorii (v granitsakh SSSR kak istoricheskoi oblasti) (Synopsis of the Avifauna of Russia and Adjacent Territories (Within the Boundaries of the USSR as a Historical Area)), Moscow: Nauka, 2003.

  112. Summers, R.W., Jardine, D.C., Marquiss, M., and Rae, R., The distribution and habitats of crossbills Loxia spp. in Britain, with special reference to the Scottish crossbill Loxia scotica, Ibis, 2002, vol. 144, pp. 393–410.

    Article  Google Scholar 

  113. Summers, R.W., Dawson, R.J., and Phillips, R.E., Assortative mating and patterns of in-heritance indicate that the three crossbill taxa in Scotland are species, J. Avian Biol., 2007, vol. 38, pp. 153–162.

    Article  Google Scholar 

  114. Taikova, S.Yu. and Redkin, Ya.A., On the forms of the group of gray shrikes in the European part of Russia and Ukraine in the light of modern ideas about the taxonomy of the complex, in Redkie vidy ptits Nechernozemnogo tsentra Rossii. Materialy V soveshchaniya “Rasprostranenie i ekologiya redkikh vidov ptits Nechernozemnogo tsentra Rossii” (Moskva, 6–7 dekabrya 2014 g.) (Rare Species of Birds of the Nonchernozem Center of Russia: Proceedings of the V Conference “Distribution and Ecology of Rare Species of Birds of the Nonchernozem Center of Russia” (Moscow, December 6–7, 2014)), Moscow, 2014, pp. 223–240.

  115. The Howard and Moore Complete Checklist of the Birds of the World, Dickinson, E.C. and Remsen, J.V., Eds., 4th ed., Eastbourne, 2013, vol. 1.

    Google Scholar 

  116. The Howard and Moore Complete Checklist of the Birds of the World, Dickinson, E.C. and Christidis, L., Eds., 4th ed., Eastbourne, 2014, vol. 2.

    Google Scholar 

  117. Thomson, S.A., Pyle, R.L., Ahyong, S.T., Alonso-Zarazaga, M., Ammirati, J., Araya, J.F., et al., Taxonomy based on science is necessary for global conservation, PLoS Biol., 2018, vol. 16, no. 3. e2005075. https://doi.org/10.1371/journal.pbio.2005075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tobias, J.A., Seldon, N., Spottiswoode, C.N., Pilgrim, J.D., Fishpool, L.D.C., and Collar, N.J., Quantitative criteria for species delimitation, Ibis, 2010, vol. 152, no. 4, pp. 724–746.

    Article  Google Scholar 

  119. Töpfer, T., Haring, E., Birkhead, T.R., Lopes, R.J., Severinghaus, L.L., Martens, J., and Päckert, M., A molecular phylogeny of bullfinches Pyrrhula brisson, 1760 (Aves: Fringillidae), Mol. Phylogenet. Evol., 2011, vol. 58, pp. 271–282.

    Article  PubMed  CAS  Google Scholar 

  120. Valchuk, O.P., Redkin, Ya.A., and Sotnikov, V.N., The first record of the red-throated thrush Turdus ruficollis and new finds of birds with phenotypes of the group of dark-throated thrushes T. ruficollis and T. atrogularis in Primorye, Russ. Ornitol. Zh., 2013, vol. 22, no. 947, pp. 3315–3320.

    Google Scholar 

  121. Vasil’eva, L.N., The hierarchy and combinatorics of traits in evolutionary taxonomy, Tr. Zool. Inst. Ross. Akad. Nauk, 2009, suppl. 1, pp. 235–249.

  122. Vaurie, Ch., The Birds of the Palearctic Fauna. Order Passeriformes, London, 1959.

    Google Scholar 

  123. Vijay, N., Bossu, Ch.M., Poelstra, J.W., Weissensteiner, M.H., Suh, A., Kryukov, A.P., and Wolf, J.B.W., Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex, Nat. Commun., 2016, vol. 7, pp. 1–10. https://doi.org/10.1038/ncomms13195

    Article  CAS  Google Scholar 

  124. Vinarskii, M.V., The fate of the subspecies category in zoological taxonomy. 1. History, Zh. Obshch. Biol., 2015a, vol. 76, no. 1, pp. 3–14.

    CAS  PubMed  Google Scholar 

  125. Vinarskii, M.V., The fate of the subspecies category in zoological taxonomy. 2. Modernity, Zh. Obshch. Biol., 2015b, vol. 76, no. 2, pp. 99–110.

    Google Scholar 

  126. Wiley, E.O. and Liberman, B.S., Phylogenetics: The Theory and Practice of Phylogenetic Systematics, Hoboken, 2011.

    Book  Google Scholar 

  127. Wiley, E.O. and Mayden, R.L., Species and speciation in phylogenetic systematics, with examples from the North American fish fauna, Ann. Missouri Bot. Garden, 1985, vol. 72, pp. 596–635.

    Article  Google Scholar 

  128. Zablotskaya, M.M., Voice responses of eastern and European goldfinches (Passeres, Carduelinae): form and functional significance of calls, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1975, vol. 80, no. 3, pp. 22–38.

    Google Scholar 

  129. Zelenkov, N.V., Methods of phylogenetics and evolutionary biology: advances and limitations, in XIV Mezhdunar. ornitol. konf. Sev. Evrazii (Almaty, 18–24 avgusta 2015 g.). Doklady (XIV International ornithological conference of Northern Eurasia (Almaty, August 18–24, 2015), Reports), Almaty, 2015, vol. 2, pp. 138–165.

  130. Zhang, Z-Q., Animal biodiversity: an update of classification and diversity in 2013, Zootaxa, 2013, vol. 3703, no. 1, pp. 5–11. https://doi.org/10.11646/zootaxa.3703.1.3

    Article  Google Scholar 

  131. Zink, R.M., The role of subspecies in obscuring avian biological diversity and misleading conservation policy, Proc. R. Soc. B: Biol. Sci., 2004, vol. 271, pp. 561–564.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to M.N. Dement’ev for the excellent translation of the preface in the HBW and BirdLife International Illustrated Checklist of the Birds of the World (del Hoyo and Collar, 2014), which greatly facilitated our work; K.E. Mikhailov for numerous long discussions on the “species issue,” which allowed us to understand a lot for ourselves; and A.A. Lisovskii and K.V. Makarov for valuable comments and criticism at the stages of preparing both the manuscript of the article and the abstract of the report at the 1st All-Russia Ornithological Congress (Tver, January 29–February 4, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Koblik.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koblik, E.A., Red’kin, Y.A., Volkov, S.V. et al. The Concept of Bird Species: Theory and Practice. Biol Bull Russ Acad Sci 47, 707–723 (2020). https://doi.org/10.1134/S1062359020070079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020070079

Keywords:

Navigation