Skip to main content

Advertisement

Log in

Assessment of vulnerability in the aquifers of rapidly growing sub-urban: a case study with special reference to land use

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Groundwater vulnerability was assessed through the SINTACS-LU model to explore the aquifers which are more susceptible to contamination. The aquifers of the Palayamkottai taluk are at risk due to the uncontrolled agricultural practice and urbanization. As these aquifers are the source of water to most of the population, mitigation of the risk to the aquifer is essential. This proposed model uses eight parameters like water table depth, effective recharge, depth to unsaturated zone, soil media, aquifer media, hydraulic conductivity, topography, and land use to assess the vulnerability through index measurements. The index in the vulnerability map was reclassified through the cumulative score index (CSI) technique. Sensitivity investigation was done to survey the effect of each parameter over the vulnerability. Agricultural regions (185 km2) and built-up regions (50 km2) covering more than 50% of the land use exert pressure on the intrinsic resistance of the aquifers and put them at risk. The classified map has four classes according to vulnerability such as very high vulnerable zone (53.3 km2), high vulnerable zone (81.95 km2), moderate vulnerable zone (125.22 km2), and low vulnerable zone (39.8 km2). The vulnerability assessment made by the inclusion of land use in the intrinsic vulnerability can help in sustainable development of sub-urban regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achu AL, Reghunath R, Thomas J (2020) Mapping of groundwater recharge potential zones and identification of suitable site-specific recharge mechanisms in a tropical river basin. Earth Syst Environ 4:131–145. https://doi.org/10.1007/s41748-019-00138-5

    Article  Google Scholar 

  • Ahirwar R, Malik MS, Shukla JP (2020) Groundwater vulnerability assessment of Hoshangabad and Budni industrial area, Madhya Pradesh, India, using geospatial techniques. Appl Water Sci 10:1–14. https://doi.org/10.1007/s13201-020-1172-9

    Article  Google Scholar 

  • Al Kuisi M, El-Naqa A, Hammouri N (2006) Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. Environ Geol 50:651–667. https://doi.org/10.1007/s00254-006-0239-8

    Article  Google Scholar 

  • Alam F, Umar R, Ahmed S, Dar FA (2014) A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab J Geosci 7:927–937. https://doi.org/10.1007/s12517-012-0796-y

    Article  Google Scholar 

  • Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC : a standardized system for evaluating ground water pollution potential using hydrogeologic settings. Environmental Production Agency, U.S.

    Google Scholar 

  • American Public Health Association (2012) Standard methods for the examination of water and wastewater. Washington, DC

    Google Scholar 

  • Anim GM, Anornu GK, Agodzo SK, Applah-Adjel EK (2019) Groundwater risk assessment of shallow aquifers within the Atankwidi Basin of Northeastern Ghana. Earth Syst Environ 3:59–72. https://doi.org/10.1007/s41748-018-0077-3

    Article  Google Scholar 

  • Anand B, Karunanidhi D, Subramani T, Srinivasamoorthy K, Suresh M (2020) Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River basin, Tamil Nadu, India. Environ Dev Sustain 22:2779–2800. https://doi.org/10.1007/s10668-019-00318-3

    Article  Google Scholar 

  • Anand B, Karunanidhi D, Subramani T, Srinivasamoorthy K, Raneesh Kolladi Y (2017) Prioritization of subwatersheds based on quantitative morphometric analysis in lower Bhavani basin, Tamil Nadu, India using DEM and GIS techniques. Arab J Geosci 10(24). https://doi.org/10.1007/s12517-017-3312-6

  • Ashokraj C, Kirubakaran M, Colins Johnny J (2015) Estimation of groundwater vulnerability using remote sensing and GIS techniques. Int J Innov Res Sci Technol 1(9):118–125

    Google Scholar 

  • Babiker IS, Mohamed AAM, Tetsuya H, Kikuo K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005

    Article  Google Scholar 

  • Balamurugan P, Kumar PS, Shankar K (2020a) Dataset on the suitability of groundwater for drinking and irrigation purposes in the Sarabanga River region, Tamil Nadu, India. Data Br 29:105255. https://doi.org/10.1016/j.dib.2020.105255

    Article  Google Scholar 

  • Balamurugan P, Kumar PS, Shankar K, Nagavinothini R, Vijayasurya K (2020b) Non-carcinogenic risk assessment of groundwater in southern part of Salem district in Tamilnadu, India. J Chil Chem Soc 65:4697–4707. https://doi.org/10.4067/S0717-97072020000104697

    Article  Google Scholar 

  • CGWB (2009) Technical Report Series District Groundwater Brochure Tirunelveli District. Tamil Nadu, Tirunelveli

    Google Scholar 

  • Chamanehpour E, Hossein SM, Yousefi E (2020) The potential evaluation of groundwater pollution based on the intrinsic and the specific vulnerability index. Groundw Sustain Dev 10:100313. https://doi.org/10.1016/j.gsd.2019.100313

    Article  Google Scholar 

  • Civita M, De Maio M (2004) Assessing and mapping groundwater vulnerability to contamination: the Italian “combined” approach. Geofis Int 43:513–532

    Google Scholar 

  • Civita M, De Maio M, Ubertini L (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico Sintacs R5: a new parametric system for the assessment and automatic mapping of ground water vulnerability to contamination. Pitagora

  • Colins Johnny J, Sashikkumar M, Anas P, Kirubakaran M (2016) GIS-based assessment of aquifer vulnerability using DRASTIC Model: a case study on Kodaganar basin. Earth Sci Res J 20:H1–H8. https://doi.org/10.15446/esrj.v20n1.52469

    Article  Google Scholar 

  • Edet AE (2004) Vulnerability evaluation of a coastal plain sand aquifer with a case example from Calabar, southeastern Nigeria. Environ Geol 45:1062–1070. https://doi.org/10.1007/s00254-004-0964-9

    Article  Google Scholar 

  • El-Zeiny AM, Elbeih SF (2019) GIS-based evaluation of groundwater quality and suitability in Dakhla Oases, Egypt. Earth Syst Environ 3:507–523. https://doi.org/10.1007/s41748-019-00112-1

    Article  Google Scholar 

  • Etefa G, Frankl A, Lanckreit S, Biadgilgn D, Gebreyohannes Z, Amanuel Z, Nyssen J (2018) Changes in landuse/landcover mapped over 80 years in the highlands of northern Ethiopia. J Geogr Sci 28(10):1538–1563. https://doi.org/10.1007/s11442-018-1560-3

    Article  Google Scholar 

  • Ghosh A, Tiwari AK, Das S (2015) A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Model Earth Syst Environ 1:1–14. https://doi.org/10.1007/s40808-015-0009-2

    Article  Google Scholar 

  • Masoud MH, El Osta MM (2016) Evaluation of groundwater vulnerability in El-Bahariya Oasis, Western Desert, Egypt, using modelling and GIS techniques: A case study. J Earth Syst Sci 125:1139–1155. https://doi.org/10.1007/s12040-016-0725-7

    Article  Google Scholar 

  • Hasan M, Islam MA, Aziz Hasan M, Alam MJ, Peas MH (2019) Groundwater vulnerability assessment in Savar upazila of Dhaka district, Bangladesh — a GIS-based DRASTIC modeling. Groundw Sustain Dev 9:100220. https://doi.org/10.1016/j.gsd.2019.100220

    Article  Google Scholar 

  • Heath RC (2004) Basic ground-water hydrology., 10th edn. U .S. Geological Survey

  • Kapelj S, Loborec J, Kapelj J (2013) Assessment of aquifer intrinsic vulnerability by the SINTACS method. Geol Croat 66:119–128. https://doi.org/10.4154/gc.2013.09

    Article  Google Scholar 

  • Kirubakaran M, Colins Johnny J, Ashokraj C (2019) Delineating the groundwater potential zone in Tirunelveli Taluk, South Tamil Nadu, India, using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) Techniques. Proc Natl Acad Sci India Sect A Phys Sci. https://doi.org/10.1007/s40010-019-00608-5

  • Kirubakaran M, Colins Johnny J, Ashokraj C, Arivazhagan S (2016) A geostatistical approach for delineating the potential groundwater recharge zones in the hard rock terrain of Tirunelveli taluk, Tamil Nadu, India. Arab J Geosci 9:382. https://doi.org/10.1007/s12517-016-2419-5

    Article  Google Scholar 

  • Kumar A, Pramod Krishna A (2019) Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int:6049. https://doi.org/10.1080/10106049.2018.1557259

  • Kumari M, Sarma K, Sharma R (2019) Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sens Appl Soc Environ 15:100239. https://doi.org/10.1016/j.rsase.2019.100239

    Article  Google Scholar 

  • Machiwal D, Jha MK, Singh VP, Mohan C (2018) Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Rev 185:901–927. https://doi.org/10.1016/j.earscirev.2018.08.009

    Article  Google Scholar 

  • Meiyappan P, Roy PS, Sharma Y et al (2017) Dynamics and determinants of land change in India: integrating satellite data with village socioeconomics. Reg Environ Chang 17:753–766. https://doi.org/10.1007/s10113-016-1068-2

    Article  Google Scholar 

  • Mobin Eftekhari, Mohammad Akbari (2020) Evaluation of the SINTACS-LU model capability in the analysis of aquifer vulnerability potential in semi-arid regions. J Appl Res Water Wastewater. doi:10.22126/ARWW.2020.4785.1151

  • MoEF&CC (2019) Annual report 2019–20: Ministry of Environment. Change, Forests and Climate

    Google Scholar 

  • Mohamed A, Worku H (2020) Urban land cover and morphometric analysis for flash flood vulnerability mapping and riparian landscape conservation in Kebena river watershed. Addis Ababa Applied Geomatics. https://doi.org/10.1007/s12518-020-00318-3

  • Nahin KTK, Basak R, Alam R (2020) Groundwater vulnerability assessment with DRASTIC index method in the salinity-affected southwest coastal region of Bangladesh: a case study in Bagerhat Sadar, Fakirhat and Rampal. Earth Syst Environ 4:183–195. https://doi.org/10.1007/s41748-019-00144-7

    Article  Google Scholar 

  • Napolitano P, Fabbri A (1996) Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the 2nd HydroGIS conference,. IAHS Publ Appl Geogr Inf Syst Hydrol Water Resour Manag (Proceedings Vienna Conf April 1996) 235:559–566

  • Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2014a) Estimating groundwater vulnerability to pollution using modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71(7):3119–3131. https://doi.org/10.1007/s12665-013-2690-7

    Article  Google Scholar 

  • Neshat A, Pradhan B, Dadras M (2014b) Groundwater vulnerability assessment using an improved DRASTIC method. Resour Conserv Recycl 86:74–86. https://doi.org/10.1016/j.resconrec.2014.02.008

    Article  Google Scholar 

  • Neshat A, Pradhan B (2014) An integrated DRASTIC model using probabilistic based frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat Hazards 76(1):543–563. https://doi.org/10.1007/s11069-014-1503-y

    Article  Google Scholar 

  • Neshat A, Pradhan B (2017) Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arab J Geosci 10(22):501. https://doi.org/10.1007/s12517-017-3292-6

    Article  Google Scholar 

  • Noori R, Ghahremanzadeh H, Kløve B, Adamowski JF, Baghvand A (2019) Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 54:89–100. https://doi.org/10.1080/10934529.2018.1537728

    Article  Google Scholar 

  • Piscopo G (2001) Groundwater vulnerability map explanatory notes Groundwater vulnerability map explanatory notes Castlereagh Catchment

  • Linsley RK, Kohler MA, Paulhus JLH (1988) Hydrology for engineers. McGraw-Hill, London

    Google Scholar 

  • Rajamanikam M, Raj BJR, Sathiyan R, Chandra Prasath VTS, Mahendran M, Punithavathy U, Mariasusai M (2016) Coastal geomorphological mapping of Tirunelveli District, Southern Tamilnadu using GIS. Int J Eng Manag Res 6:569–572

    Google Scholar 

  • Ramos Leal JA, Tapia Silva FO, Sandoval Montes I (2012) Analysis of aquifer vulnerability and water quality using SINTACS and geographic weighted regression. Environ Earth Sci 66:2257–2271. https://doi.org/10.1007/s12665-011-1447-4

    Article  Google Scholar 

  • Rapti-Caputo D, Sdao F, Masi S (2006) Pollution risk assessment based on hydrogeological data and management of solid waste landfills. Eng Geol 85:122–131. https://doi.org/10.1016/j.enggeo.2005.09.033

    Article  Google Scholar 

  • Rimon Y, Dahan O, Nativ R, Geyer S (2007) Water percolation through the deep vadose zone and groundwater recharge: preliminary results based on a new vadose zone monitoring system. Water Resour Res 43:1–12. https://doi.org/10.1029/2006WR004855

    Article  Google Scholar 

  • Rosenmeier MF, Hodell DA, Brenner M, Curtis JH, Martin JB, Flavio S, Guilderson TP (2002) Influence of vegetation change on watershed hydrology: implications for paleoclimatic interpretation of lacustrine δ19O records. J Paleolimnol 27(1):117–131. https://doi.org/10.1023/A:1013535930777

    Article  Google Scholar 

  • Samson S, Elangovan K (2015) Delineation of groundwater recharge potential zones in Namakkal District, Tamilnadu, India using remote sensing and GIS. J Indian Soc Remote Sens 43:769–778. https://doi.org/10.1007/s12524-014-0442-0

    Article  Google Scholar 

  • Kumar S, Thirumalaivasan D, Radhakrishnan N, Mathew S (2013) Groundwater vulnerability assessment using SINTACS model. Geomatics, Nat Hazards Risk 4:339–354. https://doi.org/10.1080/19475705.2012.732119

    Article  Google Scholar 

  • Sahoo SN, Sreeja P (2012) Application of geospatial technologies to determine imperviousness in periurban areas. Int J Remote Sens Appl 2(4):47–51 IJRSA10068/IJRSA10068

    Google Scholar 

  • Seto KC (2002) Monitoring landuse change in the Pearl River Delta using Landsat TM. Int J Remote Sens 23(10):1985–2004

    Article  Google Scholar 

  • Srinivasamoorthy K, Vijayaraghavan K, Vasanthavigar M, Rajivgandhi R, Sarma VS (2011) Integrated techniques to identify groundwater vulnerability to pollution in a highly industrialized terrain, Tamilnadu, India. Environ Monit Assess 182:47–60. https://doi.org/10.1007/s10661-010-1857-x

    Article  Google Scholar 

  • TNT&CP (2004) Master Plan for Tirunelveli Local Planning Area. Tirunelveli

    Google Scholar 

  • USDA (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. The United States Department of Agriculture (USDA)

  • WHO (2008) WHO guidelines for drinking-water quality, 3rd edn

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colins Johnny Jesudhas.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jesudhas, C.J., Chinnasamy, A., Muniraj, K. et al. Assessment of vulnerability in the aquifers of rapidly growing sub-urban: a case study with special reference to land use. Arab J Geosci 14, 60 (2021). https://doi.org/10.1007/s12517-020-06439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-06439-8

Keywords

Navigation