Skip to main content
Log in

Probiotics inspired from natural ecosystem to inhibit the growth of Vibrio spp. causing white gut syndrome in Litopenaeus vannamei

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Probiotics inspired by host-microbe interactions in the natural ecosystem are propitious in controlling bacterial infections in aquaculture and veterinary systems. Here we report the isolation and characterization of pathogenic Vibrio spp. and lactic acid bacteria from an intensive culture system of Litopenaeus vannamei and natural ecosystem, respectively. The pathogen isolated from the gut of L. vannamei showing the symptoms of white gut disease were identified as V. parahaemolyticus and V. campbelli. Both the pathogens expressed the virulence genes, rtxA, and tcpA and were showing multiple antibiotic resistance (MAR) index of more than 0.5. The lactic acid bacteria isolated from the sediment and gut of benthic organisms (shrimp and polychaetes) collected from a tropical estuary were classified as member of 9 OTUs such as Pediococcus stilessi, Lactobacillus fermentum, L. rhamnosus, Weissella cibaria, Enterococcus durans, E. fecalis, Streptococcus gallolyticus and L. garvieae. Majority of these isolates were facultative in nature and were able to tolerate gastric juice and bile salt. Out of 83 bacteria isolated from sediment and gut, 36 showed abilities to reduce the pH of culture medium to less than five. Many of these isolates (34 Nos.) showed production of hydrolytic enzymes and secondary metabolites with antagonistic activity against both the pathogens (1 No.) or separately toward V. parahaemolyticus (9 Nos.) and V. campbelli (11 Nos.). Overall, the current study proposes a natural ecosystem as a potential source of lactic acid bacteria with probiotic potentials to prevent the vibriosis disease outbreaks in shrimp aquaculture systems. Further studies are required to understand the abilities of lactic acid bacteria to colonize shrimp intestine, stimulate immune system and manipulate microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alamdary SZ, Bakhshi B (2020) Lactobacillus acidophilus attenuates toxin production by Vibrio cholerae and shigella dysenteriae following intestinal epithelial cells infection. Microb Pathog 149:104543. https://doi.org/10.1016/j.micpath.2020.104543

    Article  CAS  PubMed  Google Scholar 

  • Asok A, Arshad E, Jasmin C, Pai SS, Singh IS, Mohandas A, Anas A (2012) Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microb Biotechnol 5(1):59–68. https://doi.org/10.1111/j.1751-7915.2011.00297.x

    Article  CAS  PubMed  Google Scholar 

  • Balcazar JL, Decamp O, Vendrell D, de Blas I, Ruiz-Zarzuela I (2006) Health and nutritional properties of probiotics in fish and shellfish. Microb Ecol Health Dis 18:65–70

    CAS  Google Scholar 

  • Bilung LM, Pui CF, Su’ut L, Apun K (2018) Evaluation of BOX-PCR and ERIC-PCR as molecular typing tools for pathogenic leptospira. Dis Markers 2018:1–9. https://doi.org/10.1155/2018/1351634

    Article  CAS  Google Scholar 

  • Cano-Gomez A, Bourne DG, Hall MR, Owens L, Hoj L (2009) Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: current methods and future prospects. Aquaculture 287:1–10

    Article  CAS  Google Scholar 

  • Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, Mukhopadhyay AK, Ramamurthy T, Bhattacharya SK, Klose KE, Nandy RK (2009) Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 47(4):1087–1095. https://doi.org/10.1128/jcm.02026-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AJ, Hasan NA, Haley BJ, Taviani E, Tarnowski M, Brohawn K, Johnson CN, Colwell RR, Huq A (2017) Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay. Frontiers in Microbiology, Maryland. https://doi.org/10.3389/fmicb.2017.02460

    Book  Google Scholar 

  • Chow KH, Ng TK, Yuen KY, Yam WC (2001) Detection of RTX toxin gene in Vibrio cholerae by PCR. J Clin Microbiol 39(7):2594–2597. https://doi.org/10.1128/JCM.39.7.2594-2597.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conejero MJU, Hedreyda CT (2004) PCR detection of hemolysin (vhh) gene in Vibrio harveyi. J Gen Appl Microbiol 50:137–142

    Article  CAS  Google Scholar 

  • Cornejo-Granados F, Lopez-Zavala AA, Gallardo-Becerra L, Mendoza-Vargas A, Sánchez F, Vichido R, Brieba LG, Viana MT, Sotelo-Mundo RR, Ochoa-Leyva A (2017) Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Sci Rep 7(1):11783. https://doi.org/10.1038/s41598-017-11805-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Bi D, Wang H, Zou P, Xie G, Wan X, Yang Q, Zhu Y, Chen M, Guo C, Liu Z, Wang W, Huang J (2017) pirAB(vp) -bearing s and Vibrio campbellii pathogens isolated from the same AHPND-affected pond possess highly similar pathogenic plasmids. Front Microbiol 8:1859. https://doi.org/10.3389/fmicb.2017.01859

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2019) The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO.

  • FAO, Ifad, WFP (2013) The State of Food Insecurity in the World 2013-The multiple dimensions of food security. FAO, Rome

    Google Scholar 

  • Haldar S, Chatterjee S, Sugimoto N, Das S, Chowdhury N, Hinenoya A, Asakura M, Yamasaki S (2011) Identification of Vibrio campbellii isolated from diseased farm-shrimps from south India and establishment of its pathogenic potential in an Artemia model. Microbiology 157(1):179–188. https://doi.org/10.1099/mic.0.041475-0

    Article  CAS  PubMed  Google Scholar 

  • Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A (2017) Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence?. BM13 Vet Res 13 (211)

  • Hommais F, Laurent-Winter C, Labas V, Krin E, Tendeng C, Soutourina O, Danchin A, Bertin P (2002) Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics 2(5):571–579. https://doi.org/10.1002/1615-9861(200205)2:5%3c571::Aid-prot571%3e3.0.Co;2-g

    Article  CAS  PubMed  Google Scholar 

  • Ismail MM, Soliman WSE (2010) Studies on Probiotic effects of lactic acid bacteria against Vibrio vulnificus in freshwater prawn Macrobrachium rosenbergii. J Am Sci 6:781–787

    Google Scholar 

  • Jasmin C, Anas A, Nair S (2015) Bacterial diversity associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the coral reef ecosystem of Gulf of Mannar, Southeast Coast of India. PLoS ONE 10(5):e0123222

    Article  CAS  Google Scholar 

  • Jayasree L, Janakiram P, Madhavi R (2006) Characterization of Vibrio spp associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquac Soc 37(4):523–532. https://doi.org/10.1111/j.1749-7345.2006.00066.x

    Article  Google Scholar 

  • Jin D-Z, Xiao-Jing Xu, Chen S-H, Wen S-Y, Ma X-E, Zhang Z, Lin F, Wang S-Q (2007) Detection and identification of enterohemorrhagic Escherichia coli O157:H7 and Vibrio cholerae O139 using oligonucleotide microarray. Infect Agents Cancer 2(23):1–10

    Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733

    Article  CAS  Google Scholar 

  • Kabiraj M, Das PK, Sultana S, Banu GR (2020) Antagonistic effect of Lactobacillus spp. on experimentally Vibrio spp. infected Penaeus monodon. Asian J Med Biol Res 6:311–315

    Article  Google Scholar 

  • Kalpana BJ, Aarthy S, Pandian SK (2012) Antibiofilm activity of α-amylase from Bacillus subtilis S8–18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol 167(6):1778–1794. https://doi.org/10.1007/s12010-011-9526-2

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Sharma P, Kalia N, Singh J, Kaur S (2018) Anti-biofilm properties of the fecal probiotic lactobacilli against Vibrio spp. Front Cell Infect Microbiol 8:120–120. https://doi.org/10.3389/fcimb.2018.00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Chung HY, Lee D-H, Lim JG, Kim SK, Ku H-J, Kim Y-T, Kim H, Ryu S, Lee J-H, Choi SH (2016) Complete genome sequence of Vibrio parahaemolyticus strain FORC_008, a foodborne pathogen from a flounder fish in South Korea. Pathog Dis. https://doi.org/10.1093/femspd/ftw044

    Article  PubMed  Google Scholar 

  • Kumar S, Jangam AK, Akhil V, Rajendran V, Katneni VK, Sahaya Rajan JJ, Grover M, Nagaleekar VK, Alavandi SV, Vijayan KK (2017) Draft genome sequence of the luminescent strain Vibrio campbellii LB102, isolated from a Black Tiger Shrimp (Penaeus monodon) broodstock rearing system. Genome Announc 5(20):e00342-e1317. https://doi.org/10.1128/genomeA.00342-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (ed), Nucleic acid techniques in bacterial systematics John Wiley & Sons, New York:115–175

  • Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ (1999) Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA 96(3):1071–1076. https://doi.org/10.1073/pnas.96.3.1071

    Article  CAS  PubMed  Google Scholar 

  • Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F (2005) Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71(12):8531. https://doi.org/10.1128/AEM.71.12.8531-8536.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zhang X, Qiu Q, Chen J, Xiong J (2020) Identifying Potential Polymicrobial Pathogens: Moving Beyond Differential Abundance to Driver Taxa. Microbial Ecology

  • Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ (2018) Probiotic strains detect and suppress cholera in mice. Sci Transl Med 10(445):eaao2586. https://doi.org/10.1126/scitranslmed.aao2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marta T, Artur A, Maria JS, António C (2005) BOX-PCR is an adequate tool for typing Aeromonas spp. Antonie Van Leeuwenhoek 88:173–179

    Article  Google Scholar 

  • Mohamad N, Amal MNA, Yasin ISM, Zamri Saad M, Nasruddin NS, Al-saari N, Mino S, Sawabe T (2019) Vibriosis in cultured marine fishes: a review. Aquaculture 512:734289. https://doi.org/10.1016/j.aquaculture.2019.734289

    Article  Google Scholar 

  • Natesan S, Muthuraman S, Gopal S (2012) Probiotic effect of Lactobacillus acidophilus against vibriosis in juvenile shrimp (Penaeus monodon). Afr J Biotech 11(91):15811–15818. https://doi.org/10.5897/ajb12.1328

    Article  Google Scholar 

  • Nguyen TTL, Trinh NA, Tran THT, Nguyen TT, Huynh KH, Pham KL, Huynh TG, Truong QP, Nguyen TNT (2019) Selection of lactic acid bacteria (LAB) antagonizing vibrio parahaemolyticus: the pathogen of acute hepatopancreatic necrosis disease (AHPND) in Whiteleg Shrimp (Penaeus vannamei). Biology 8(4):91

    Article  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717(2):67–88. https://doi.org/10.1016/j.bbamem.2005.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai SS, Anas A, Jayaprakash NS, Priyaja P, Sreelakshmi B, Preetha R, Philip R, Mohandas A, Singh ISB (2010) Penaeus monodon larvae can be protected from Vibrio harveyi infection by pre-emptive treatment of a rearing system with antagonistic or non-antagonistic bacterial probiotics. Aquac Res 41(6):847–860

    Article  CAS  Google Scholar 

  • Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2012.00086

    Article  PubMed  PubMed Central  Google Scholar 

  • Phianphak W, Rengpipat S, Piyatiratitivorakul S, Menasveta P (1999) Probiotic use of Lactobacillus spp. for black tiger shrimp, Penaeus monodon. J Sci Res Chula Univ 24(1):41–58

    CAS  Google Scholar 

  • Pickard JM, Zeng MY, Caruso R, Nunez G (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279(1):70–89. https://doi.org/10.1111/imr.12567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prayitno SB, Latchford JW (1995) Experimental infections of crustaceans with luminous bacteria related to Photobacterium and Vibrio. Effect of salinity and pH on infectiosity. Aquaculture 132(1):105–112. https://doi.org/10.1016/0044-8486(94)00374-W

    Article  Google Scholar 

  • Qi Z, Zhang XH, Boon N, Bossier P (2009) Probiotics in aquaculture of China—current state, problems and prospect. Aquaculture 290:15–21

    Article  Google Scholar 

  • Qin Z, Yang X, Chen G, Park C, Liu Z (2020) Crosstalks Between Gut Microbiota and Vibrio Cholerae. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.582554

    Article  PubMed  PubMed Central  Google Scholar 

  • Racault M-F, Abdulaziz A, George G, Menon N, Punathil M, McConville K, Loveday B, Platt T, Sathyendranath S, Vijayan V (2019) Environmental reservoirs of vibrio cholerae: challenges and opportunities for ocean-color remote sensing. Remote Sensing 11(23):2763

    Article  Google Scholar 

  • Rajeev R, Adithya KK, Kiran GS, Selvin J (2021) Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Rev Aquac 13(1):238–258. https://doi.org/10.1111/raq.12471

    Article  Google Scholar 

  • Raszl SM, Froelich BA, Vieira CRW, Blackwood AD, Noble RT (2016) Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections. J Appl Microbiol 121 (5)

  • Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl Å, Olsen RE, Dimitroglou A, Foey A, Davies S, Owen M, Lauzon HL, Martinsen LL, De Schryver P, Bossier P, Sperstad S, Merrifield DL (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22(2):219–282. https://doi.org/10.1111/anu.12346

    Article  CAS  Google Scholar 

  • Rios PDL, Gajardo G (2004) The brine shrimp Artemia (Crustacea: Anostraca): a model organism to evaluate management policies in aquatic resources. Revista Chilena de Historia Natural 77:3–4

    Google Scholar 

  • Rivera IN, Chun J, Huq A, Sack RB, Colwell RR (2001) Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:2421–2429

    Article  CAS  Google Scholar 

  • Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B (2000) Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185:235–243

    Article  Google Scholar 

  • Saleh MA-O, Cheah YK, Hamed M, Yousr AH, Son R (2014) Antibiotic resistance of Vibrio parahaemolyticus isolated from cockles and shrimp sea food marketed in Selangor, Malaysia. Clin Microbiol Open Access 3(3):1–7

    Google Scholar 

  • Sarah MM, Dieter MT, Robert DS, Samuel WB, Amanda BH, Lukas MW, Jean MR, Erdogan G, James MT, Syed AH (2008) In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Appl Environ Microbiol 74(7):2200–2209

    Article  Google Scholar 

  • Sorgeloos P, Bossuyt E, Laviña E, Baeza-Mesa M, Persoone G (1977) Decapsulation of Artemia cysts: a simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture 12:311–315

    Article  Google Scholar 

  • Stoyanova LG, Ustyugova EA, Netrusov AI (2012) Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol 48(3):229–243. https://doi.org/10.1134/S0003683812030143

    Article  CAS  Google Scholar 

  • Tada J, Ohashi T, Nishimura N, Shirasaki Y, Ozaki H, Fukushima S, Takano J, Nishibuchi M, Takeda Y (1992) Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol Cell Probes 6:477–487

    Article  CAS  Google Scholar 

  • Talpur AD, Memon AJ, Khan MI, Ikhwanuddin M, Danish Daniel MM, Abol-Munafi AB (2012) Isolation and Screening of Lactic Acid Bacteria from the Gut of Blue Swimming Crab, P. pelagicus, an in vitro Inhibition Assay and Small Scale in vivo Model for Validation of Isolates as Probiotics. J Fish Aquatic Sci 7(1):1–28

    Google Scholar 

  • Uma A, Jawahar AT, Sundararaj V (1999) Effect of a probiotic hacterium, Lactobacillus plantarum on disease resistance of Penaeus indicus larvae. Indian J Fish 46 (367–373)

  • Valsamma J, Haseeb M, Ranjit S, Anas A, Bright Singh I (2014) Shrimp production under zero water exchange mode coupled with bioremediation and application of probiotics. J Fish Internat 9:5–14

    Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. PNAS 102(52):19109–19114

    Article  CAS  Google Scholar 

  • Wang Y, Al Farraj DA, Vijayaraghavan P, Hatamleh AA, Biji GD, Rady AM (2020) Host associated mixed probiotic bacteria induced digestive enzymes in the gut of tiger shrimp Penaeus monodon. Saudi J Biol Sci 27(9):2479–2484. https://doi.org/10.1016/j.sjbs.2020.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolska K, Kot B, Jakubczak A, Rymuza K (2011) BOX-PCR is an adequate tool for typing of clinical Pseudomonas aeruginosa isolates. Folia Histochem Cytobiol 49(4):734–738. https://doi.org/10.5603/fhc.2011.0098

    Article  CAS  PubMed  Google Scholar 

  • Yang Z-q, Jin C-j, Gao L, Fang W-m, Gu R-x, Qian J-y, Jiao X-a (2013) Alleviating effects of Lactobacillus strains on pathogenic Vibrio parahaemolyticus-induced intestinal fluid accumulation in the mouse model. FEMS Microbiol Lett 339(1):30–38. https://doi.org/10.1111/1574-6968.12050

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin H, Wang X, Austin B (2018) Significance of Vibrio species in the marine organic carbon cycle—a review. Sci China Earth Sci 61(10):1357–1368. https://doi.org/10.1007/s11430-017-9229-x

    Article  CAS  Google Scholar 

  • Zheng X, Duan Y, Dong H, Zhang J (2018) Effects of dietary Lactobacillus plantarum on growth performance, digestive enzymes and gut morphology of Litopenaeus vannamei. Probiotics Antimicrob Proteins 10(3):504–510. https://doi.org/10.1007/s12602-017-9300-z

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Duan Y, Dong H, Zhang J (2020) The effect of Lactobacillus plantarum administration on the intestinal microbiota of whiteleg shrimp Penaeus vannamei. Aquaculture 526:735331. https://doi.org/10.1016/j.aquaculture.2020.735331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, CSIR-National Institute of Oceanography, Goa and the Scientist- in-Charge, CSIR-NIO Regional Centre, Kochi, for extending all required support. The work was implemented with the financial support of CSIR FTT scheme (MLP1602) and KSCSTE Govt of Kerala, as postdoctoral fellowships to VS and JC.

Funding

This work was supported by CSIR (Govt. of India) (Grant No. 33/PS/FTT/2016-MD) and KSCSTE (Govt. of Kerala) (Grant No. 001-15/PDF/2016/KSCSTE, KSCSTE/1432/2019-SPDF).

Author information

Authors and Affiliations

Authors

Contributions

AA developed the ideas, AA and VS analyzed data and wrote the manuscript, JC analyzed sequencing data, DND, SM, AMJ, SPK and BT performed the experiments. All authors approve the final manuscript.

Corresponding author

Correspondence to Abdulaziz Anas.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2291 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anas, A., Sukumaran, V., Nampullipurackal Devarajan, D. et al. Probiotics inspired from natural ecosystem to inhibit the growth of Vibrio spp. causing white gut syndrome in Litopenaeus vannamei. 3 Biotech 11, 66 (2021). https://doi.org/10.1007/s13205-020-02618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02618-2

Keywords

Navigation