Issue 3, 2021

Biomimetic photonic materials derived from chitin and chitosan

Abstract

Insight into the hierarchical structures of carbohydrate nanofibrils such as chitin and cellulose is important in order to exploit their unique geometrical features for materials innovation and emerging applications. Chitin nanofibrils are responsible for the outstanding mechanical strength in exoskeletons of some animals, and for the iridescence of some insects. The appearance of structural colors in chitin-constituted insect shells inspires scientists to mimic their photonic properties in artificial analogues, paving the path towards new optical technologies. Although the intricate organization of chitin nanofibrils in these structures was recognized several decades ago, the use of chitin nanofibrils in biomimetic templating, to transfer their sophisticated structures into solid-state materials, has only recently been exploited. Cellulose nanocrystals (CNCs) are high aspect ratio nanomaterials prepared by acid hydrolysis of the most abundant carbohydrate in plants. Similar to chitin nanofibrils, CNCs are readily dispersible in water and present an intriguing self-assembly behavior that can be exploited as a lyotropic liquid-crystalline template to fabricate photonic materials. Extended efforts of this research strategy are necessary to seek new organized structures of carbohydrate nanofibrils and to develop synthetic methods that offer access to novel biomimetic materials that combine chirality, coloration, and mesoporosity through colloidal templating and self-assembly. This Review summarizes recent progress to create functional optical materials templated by nanochitin and compares it with developments using nanocellulose.

Graphical abstract: Biomimetic photonic materials derived from chitin and chitosan

Article information

Article type
Review Article
Submitted
16 Nov 2020
Accepted
22 Dec 2020
First published
12 Jan 2021

J. Mater. Chem. C, 2021,9, 796-817

Biomimetic photonic materials derived from chitin and chitosan

E. Lizundia, T. Nguyen, R. J. Winnick and M. J. MacLachlan, J. Mater. Chem. C, 2021, 9, 796 DOI: 10.1039/D0TC05381C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements