Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility

Abstract

This review describes (1) the precise synthesis of polyrotaxane (PRx) and (2) materials using PRx. PRx has a necklace-like structure in which a linear molecule penetrates the cavity of a cyclic molecule and both ends of the linear molecule are capped with a bulky substituent. The supramolecular structure of PRx can be formed with cyclic molecules used as building blocks. PRx exhibits many features (e.g., cyclic molecule slippage) that are not found in other supramolecular structures. In this review, we report that the number of cyclic molecules, the length (molecular weight) of the linear molecules, and the combination of the cyclic molecules and linear molecules in PRx can be precisely controlled to maximize cyclic molecule slippage. In addition, we created a material that quickly recovers its material strength because of the cyclic molecule slippage of PRx.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lehn J-M. Supramolecular chemistry: concepts and perspectives. Weinheim: Wiley-VCH; 1995.

    Book  Google Scholar 

  2. Lehn JM. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information-processing and self-organization. Angew Chem. 1990;29:1304–19.

    Article  Google Scholar 

  3. de Greef TFA, Meijer EW. Materials science—supramolecular polymers. Nature. 2008;453:171–3.

    Article  PubMed  Google Scholar 

  4. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Supramolecular polymerization. Chem Rev. 2009;109:5687–754.

    Article  PubMed  Google Scholar 

  5. Harada A. Supramolecular polymer chemistry. Weinheim: Wiley-VCH; 2012.

    Google Scholar 

  6. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang LL, Tan XX, Wang ZQ, Zhang X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev. 2015;115:7196–239.

    Article  CAS  PubMed  Google Scholar 

  8. Wehner M, Wurthner F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem. 2020;4:38–53.

    Article  CAS  Google Scholar 

  9. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater. 2011;10:14–27.

    Article  CAS  PubMed  Google Scholar 

  10. Yan X, Wang F, Zheng B, Huang F. Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev. 2012;41:6042–65.

    Article  CAS  PubMed  Google Scholar 

  11. Wei Z, Yang JH, Zhou JX, Xu F, Zrinyi M, Dussault PH, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev. 2014;43:8114–31.

    Article  CAS  PubMed  Google Scholar 

  12. Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun. 2020;56:4381–95.

    Article  CAS  Google Scholar 

  13. Fouquey C, Lehn JM, Levelut AM. Molecular recognition directed self‐assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv Mater. 1990;2:254–7.

    Article  CAS  Google Scholar 

  14. Li G, Mcgown LB. Molecular nanotube aggregates of beta-cyclodextrins and gamma-cyclodextrins linked by diphenylhexatrienes. Science. 1994;264:249–51.

    Article  CAS  PubMed  Google Scholar 

  15. Gallivan JP, Schuster GB. Aggregates of hexakis(n-hexyloxy)triphenylene self-assemble in dodecane solution: Intercalation of (-)-menthol 3,5-dinitrobenzoate induces formation of helical structures. J Org Chem. 1995;60:2423–9.

    Article  CAS  Google Scholar 

  16. Velten U, Rehahn M. First synthesis of soluble, well defined coordination polymers from kinetically unstable copper(i) complexes. Chem Commun. 1996;23:2639–40.

    Article  Google Scholar 

  17. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science. 1997;278:1601–4.

    Article  CAS  PubMed  Google Scholar 

  18. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater. 2000;12:874–8.

    Article  CAS  Google Scholar 

  19. Burattini S, Greenland BW, Merino DH, Weng WG, Seppala J, Colquhoun HM, et al. A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. J Am Chem Soc. 2010;132:12051–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature. 2010;463:339–43.

    Article  CAS  PubMed  Google Scholar 

  21. Burnworth M, Tang LM, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, et al. Optically healable supramolecular polymers. Nature. 2011;472:334–7.

    Article  CAS  PubMed  Google Scholar 

  22. He LH, Fullenkamp DE, Rivera JG, Messersmith PB. Ph responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun. 2011;47:7497–9.

    Article  CAS  Google Scholar 

  23. Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Living supramolecular polymerization realized through a biomimetic approach. Nat Chem. 2014;6:188–95.

    Article  CAS  PubMed  Google Scholar 

  24. Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. A rational strategy for the realization of chain-growth supramolecular polymerization. Science. 2015;347:646–51.

    Article  CAS  PubMed  Google Scholar 

  25. Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Wurthner F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J Am Chem Soc. 2015;137:3300–7.

    Article  CAS  PubMed  Google Scholar 

  26. Pal A, Malakoutikhah M, Leonetti G, Tezcan M, Colomb-Delsuc M, Nguyen VD, et al. Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew Chem. 2015;54:7852–6.

    Article  CAS  Google Scholar 

  27. Robinson ME, Lunn DJ, Nazemi A, Whittell GR, De Cola L, Manners I. Length control of supramolecular polymeric nanofibers based on stacked planar platinum(ii) complexes by seeded-growth. Chem Commun. 2015;51:15921–4.

    Article  CAS  Google Scholar 

  28. Kobayashi Y, Hirase T, Takashima Y, Harada A, Yamaguchi H. Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal-ligand interactions. Polym Chem. 2019;10:4519–23.

    Article  CAS  Google Scholar 

  29. Blumstein A, Clough SB, Patel L, Blumstein RB, Hsu EC. Crystallinity and order in atactic poly(acryloyloxybenzoic acid) and poly(methacryloyloxybenzoic acid). Macromolecules. 1976;9:243–7.

    Article  CAS  Google Scholar 

  30. Kato T, Frechet JMJ. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side-chain. Macromolecules. 1989;22:3818–9.

    Article  CAS  Google Scholar 

  31. Tamagawa H, Takahashi Y. Adhesion force behavior between two gels attached with an electrolytic polymer liquid. Mater Chem Phys. 2008;107:164–70.

    Article  CAS  Google Scholar 

  32. Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem. 2010;49:7461–4.

    Article  CAS  Google Scholar 

  33. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Macroscopic self-assembly through molecular recognition. Nat Chem. 2011;3:34–7.

    Article  CAS  PubMed  Google Scholar 

  34. Nakahata M, Takashima Y, Yamaguchi H, Harada A. Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun. 2011;2:511.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, et al. Rapid self-healing hydrogels. Proc Natl Acad Sci USA. 2012;109:4383–8.

    Article  CAS  PubMed  Google Scholar 

  36. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun. 2012;3:1270–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen YL, Kushner AM, Williams GA, Guan ZB. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem. 2012;4:467–72.

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Photoswitchable gel assembly based on molecular recognition. Nat Commun. 2012;3:603–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sun TL, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013;12:932–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi Y, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Reversible self-assembly of gels through metal-ligand interactions. Sci Rep. 2013;3:1243–6.

    Article  PubMed Central  Google Scholar 

  41. Guo MY, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc. 2014;136:6969–77.

    Article  CAS  PubMed  Google Scholar 

  42. Abe H, Hara Y, Maeda S, Hashimoto S. Surface modification method for adhesion of gels. Chem Lett. 2014;43:243–5.

    Article  CAS  Google Scholar 

  43. Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L. Nanoparticle solutions as adhesives for gels and biological tissues. Nature. 2014;505:382–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kobayashi Y, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Manual control of catalytic reactions: reactions by an apoenzyme gel and a cofactor gel. Sci Rep. 2015;5:16254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, et al. Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host-guest interactions. Macromolecules. 2015;48:732–8.

    Article  CAS  Google Scholar 

  46. Liu J, Tan CSY, Yu ZY, Li N, Abell C, Scherman OA. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv Mater. 2017;29:1605325–31.

    Article  Google Scholar 

  47. Liu QH, Nian GD, Yang CH, Qu SX, Suo ZG. Bonding dissimilar polymer networks in various manufacturing processes. Nat Commun. 2018;9:846–56.

  48. Itano M, Kobayashi Y, Takashima Y, Harada A, Yamaguchi H. Mechanical properties of supramolecular polymeric materials cross-linked by donor-acceptor interactions. Chem Commun. 2019;55:3809–12.

    Article  CAS  Google Scholar 

  49. Harrison IT, Harrison S. Synthesis of a stable complex of a macrocycle and a threaded chain. J Am Chem Soc. 1967;89:5723–4.

    Article  CAS  Google Scholar 

  50. Schill G, Beckmann W, Vetter W. Statistical synthesis and intraannular reaction of a rotaxane. Angew Chem. 1973;12:665–6.

    Article  Google Scholar 

  51. Bravo JA, Raymo FM, Stoddart JF, White AJP, Williams DJ. Molecular meccano. 45. High yielding template-directed syntheses of [2]rotaxanes. Eur J Org Chem. 1998;11:2565–71.

    Article  Google Scholar 

  52. Anelli PL, Spencer N, Stoddart JF. A molecular shuttle. J Am Chem Soc. 1991;113:5131–3.

    Article  CAS  PubMed  Google Scholar 

  53. Jimenez MC, Dietrich-Buchecker C, Sauvage JP. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew Chem. 2000;39:3284–7.

    Article  CAS  Google Scholar 

  54. Tsukagoshi S, Miyawaki A, Takashima Y, Yamaguchi H, Harada A. Contraction of supramolecular double-threaded dimer formed by alpha-cyclodextrin with a long alkyl chain. Org Lett. 2007;9:1053–5.

    Article  CAS  PubMed  Google Scholar 

  55. Dawson RE, Lincoln SF, Easton CJ. The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. Chem Commun. 2008;34:3980–2.

    Article  Google Scholar 

  56. Clark PG, Day MW, Grubbs RH. Switching and extension of a [c2]daisy-chain dimer polymer. J Am Chem Soc. 2009;131:13631–3.

    Article  CAS  PubMed  Google Scholar 

  57. Fang L, Hmadeh M, Wu JS, Olson MA, Spruell JM, Trabolsi A, et al. Acid-base actuation of [c2]daisy chains. J Am Chem Soc. 2009;131:7126–34.

    Article  CAS  PubMed  Google Scholar 

  58. Vukotic VN, Harris KJ, Zhu KL, Schurko RW, Loeb SJ. Metal-organic frameworks with dynamic interlocked components. Nat Chem. 2012;4:456–60.

    Article  CAS  PubMed  Google Scholar 

  59. Bruns CJ, Stoddart JF. Rotaxane-based molecular muscles. Acc Chem Res. 2014;47:2186–99.

    Article  CAS  PubMed  Google Scholar 

  60. Iwaso K, Takashima Y, Harada A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat Chem. 2016;8:626–33.

    Article  Google Scholar 

  61. Ikejiri S, Takashima Y, Osaki M, Yamaguchi H, Harada A. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J Am Chem Soc. 2018;140:17308–15.

    Article  CAS  PubMed  Google Scholar 

  62. Takashima Y, Hayashi Y, Osaki M, Kaneko F, Yamaguchi H, Harada A. A photoresponsive polymeric actuator topologically cross-linked by movable units based on a [2]rotaxane. Macromolecules. 2018;51:4688–93.

    Article  CAS  Google Scholar 

  63. Wenz G, Han BH, Muller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev. 2006;106:782–817.

    Article  CAS  PubMed  Google Scholar 

  64. Takata T. Polyrotaxane and polyrotaxane network: supramolecular architectures based on the concept of dynamic covalent bond chemistry. Polym J. 2006;38:1–20.

    Article  CAS  Google Scholar 

  65. Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric rotaxanes. Chem Rev. 2009;109:5974–6023.

    Article  CAS  PubMed  Google Scholar 

  66. Fang L, Olson MA, Benitez D, Tkatchouk E, Goddard WA, Stoddart JF. Mechanically bonded macromolecules. Chem Soc Rev. 2010;39:17–29.

    Article  CAS  PubMed  Google Scholar 

  67. Arunachalam M, Gibson HW. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog Polym Sci. 2014;39:1043–73.

    Article  CAS  Google Scholar 

  68. Hashidzume A, Yamaguchi H, Harada A. Cyclodextrin-based rotaxanes: from rotaxanes to polyrotaxanes and further to functional materials. Eur J Org Chem. 2019;2019:3344–57.

    Article  CAS  Google Scholar 

  69. Kobayashi Y, Harada A, Yamaguchi H. Supramolecular complex formation of polysulfide polymers and cyclodextrins. Chem Commun. 2020;56:13619–22.

    Article  CAS  Google Scholar 

  70. Harada A, Li J, Kamachi M. The molecular necklace—a rotaxane containing many threaded alpha-cyclodextrins. Nature. 1992;356:325–7.

    Article  CAS  Google Scholar 

  71. Araki J, Zhao CM, Kohzo I. Efficient production of polyrotaxanes from alpha-cyclodextrin and poly(ethylene glycol). Macromolecules. 2005;38:7524–7.

    Article  CAS  Google Scholar 

  72. Liu R, Harada A, Takata T. Solvent-free synthesis of unmodified cyclodextrin-based pseudopolyrotaxane and polyrotaxane by grinding. Polym J. 2007;39:21–3.

    Article  CAS  Google Scholar 

  73. Whang D, Jeon YM, Heo J, Kim K. Self-assembly of a polyrotaxane containing a cyclic ‘bead'' in every structural unit in the solid state: cucurbituril molecules threaded on a one-dimensional coordination polymer. J Am Chem Soc. 1996;118:11333–4.

    Article  CAS  Google Scholar 

  74. Raymo FM, Stoddart JF. Interlocked macromolecules. Chem Rev. 1999;99:1643–63.

    Article  CAS  PubMed  Google Scholar 

  75. Guo DS, Liu Y. Calixarene-based supramolecular polymerization in solution. Chem Soc Rev. 2012;41:5907–21.

    Article  CAS  PubMed  Google Scholar 

  76. Kato K, Okabe Y, Okazumi Y, Ito K. A significant impact of host-guest stoichiometry on the extensibility of polyrotaxane gels. Chem Commun. 2015;51:16180–3.

    Article  CAS  Google Scholar 

  77. Fleury G, Brochon C, Schlatter G, Bonnet G, Lapp A, Hadziioannou G. Synthesis and characterization of high molecular weight polyrotaxanes: towards the control over a wide range of threaded alpha-cyclodextrins. Soft Matter. 2005;1:378–85.

    Article  CAS  PubMed  Google Scholar 

  78. Ooya T, Utsunomiya H, Eguchi M, Yui N. Rapid binding of concanavalin a and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol). Bioconjugate Chem. 2005;16:62–9.

    Article  CAS  Google Scholar 

  79. Kobayashi Y, Nakamitsu Y, Zheng YT, Takashima Y, Yamaguchi H, Harada A. Control of the threading ratio of cyclic molecules in polyrotaxanes consisting of poly(ethylene glycol) and alpha-cyclodextrins. Chem Commun. 2018;54:7066–9.

    Article  CAS  Google Scholar 

  80. Katoono R, Kobayashi Y, Yui N. Preparation of loose-fit polyrotaxane composed of beta-cyclodextrin and poly(ethylene glycol) derivatives through the slipping-expanding protocol. Chem Lett. 2010;39:892–3.

    Article  CAS  Google Scholar 

  81. Katoono R, Kobayashi Y, Yamaguchi M, Yui N. Heat-induced supramolecular cross linking of dumbbell-shaped peg with beta-cd dimer based on reversible loose-fit rotaxanation. Macromol Chem Phys. 2011;212:211–5.

    Article  CAS  Google Scholar 

  82. Kobayashi Y, Katoono R, Yamaguchi M, Yui N. Modulation of reversible self-assembling of dumbbell-shaped poly(ethylene glycol)s and beta-cyclodextrins: Precipitation and heat-induced supramolecular crosslinking. Polym J. 2011;43:893–900.

    Article  CAS  Google Scholar 

  83. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    Article  CAS  Google Scholar 

  84. Oku T, Furusho Y, Takata T. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem. 2004;43:966–9.

    Article  CAS  Google Scholar 

  85. Koyanagi K, Takashima Y, Yamaguchi H, Harada A. Movable cross-linked polymeric materials from bulk polymerization of reactive polyrotaxane cross-linker with acrylate monomers. Macromolecules. 2017;50:5695–700.

    Article  CAS  Google Scholar 

  86. Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun. 2014;5:5124–31.

  87. Kobayashi Y, Zheng YT, Takashima Y, Yamaguchi H, Harada A. Physical and adhesion properties of supramolecular hydrogels cross-linked by movable cross-linking molecule and host-guest interactions. Chem Lett. 2018;47:1387–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to all his past and present colleagues for their valuable contributions to this focus review. The author is deeply indebted to Prof. Nobuhiko Yui (Tokyo Medical and Dental University), Dr. Ryo Katoono (Hokkaido University), Prof. Yoshinori Takashima (Osaka University), Prof. Akira Harada (Osaka University), and Prof. Hiroyasu Yamaguchi (Osaka University) for their continuous encouragement and constructive discussions. This work was supported by the Mazda Foundation, Kao Foundation for Arts and Sciences, the Izumi Science and Technology Foundation, Tonen General Sekiyu Research/Development Encouragement & Scholarship Foundation, and JSPS KAKENHI Grant Number 20K21223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Kobayashi.

Ethics declarations

Conflict of interest

The author declare that he had no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y. Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polym J 53, 505–513 (2021). https://doi.org/10.1038/s41428-020-00455-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00455-x

This article is cited by

Search

Quick links