Skip to main content
Log in

Deciphering Biophysical Modulation in Ovarian Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It has been long known that the oncogenic extracellular environment plays an indispensable role in developing and nurturing cancer cell progression and in resistance to standard treatments. However, by how much the biophysical components of tumour extracellular environment contribute to these processes is uncertain. In particular, the topographic environment is scarcely explored. The biophysical modulation of cell behaviour is primarily facilitated through mechanotransduction-associated mechanisms, including focal adhesion and Rho/ROCK signalling. Dysregulation of these pathways is commonly observed in ovarian cancer and, therefore, biophysical modulation of these mechanisms may be of great importance to ovarian cancer development and progression. In this work, aspects of the biophysical environment were explored using a bioimprinting technique. The study showed that topography-mediated substrate sensing delayed cell attachment, however, cell–cell interactions overrode the effect of topography in some cell lines, such as OVCAR-5. Also, 3D topographical cues were shown to modulate the inhibition of focal adhesion and Rho signalling, which resulted in higher MAPK activity in cells on the bioimprints. It was revealed that c-Src is vital to the biophysical modulation of cell proliferation and inhibition of c-Src could downregulate biophysically modulated MAPK activity. This study provides evidence that the biophysical extracellular environment affects key intracellular mechanisms associated with tumourigenicity in ovarian cancer cells.

Highlights

  • Substrate cell-like topography regulates cell attachment in ovarian cancer cells.

  • Biophysical cues influence sensitivity to inhibition of focal adhesion and Rho signalling.

  • Rho regulates growth through MAPK in a cell line dependent manner.

  • Src is vital to the biophysical modulation of cell growth in ovarian cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cox, T. R., & Erler, J. T. (2011). Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 4(2), 165–178.

    Article  CAS  Google Scholar 

  2. Calvo, F., et al. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 15(6), 637–646.

    Article  CAS  PubMed  Google Scholar 

  3. Reid, S. E., et al. (2017). Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO Journal, 36(16), 2373–2389.

    Article  CAS  Google Scholar 

  4. Ikeda, S., et al. (2003). Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Human Molecular Genetics, 12(9), 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  5. Margadant, C., Cremers, L., Sonnenberg, A., & Boonstra, J. (2013). MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells. Cellular and Molecular Life Sciences, 70(2), 293–307.

    Article  CAS  PubMed  Google Scholar 

  6. Uroz, M., et al. (2018). Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nature Cell Biology, 20(6), 646–654.

    Article  CAS  PubMed  Google Scholar 

  7. Keselowsky, B. G., Collard, D. M., & García, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947–5954.

    Article  CAS  PubMed  Google Scholar 

  8. Yim, E. K. F., Darling, E. M., Kulangara, K., Guilak, F., & Leong, K. W. (2010). Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 31(6), 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W., Mao, K., Liu, Z., & Dinh-Xuan, A. T. (2014). The role of the RhoA/Rho kinase pathway in angiogenesis and its potential value in prostate cancer (review). Oncology Letters, 8(5), 1907–1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cavalcanti-Adam, E. A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B., & Spatz, J. P. (2007). Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophysical Journal, 92(8), 2964–2974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schiller, H. B., & Fässler, R. (2013). Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Reports, 14(6), 509–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, M., Hong, L., Liao, M., & Guo, G. (2015). Expression and clinical significance of focal adhesion kinase and adrenomedullin in epithelial ovarian cancer. Oncology Letters, 10(2), 1003–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sulzmaier, F. J., Jean, C., & Schlaepfer, D. D. (2014). FAK in cancer: mechanistic findings and clinical applications. Nature Reviews Cancer, 14(9), 598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stone, R. L., et al. (2014). Focal adhesion kinase: an alternative focus for anti-angiogenesis therapy in ovarian cancer. Cancer Biology & Therapy, 15(7), 919–929.

    Article  CAS  Google Scholar 

  15. Huang, Y. W., Chen, C., Xu, M. M., Li, J. D., Xiao, J., & Zhu, X. F. (2013). Expression of c-Src and phospho-Src in epithelial ovarian carcinoma. Molecular and Cellular Biochemistry, 376(1–2), 73–79.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao, J., Xu, M., Hou, T., Huang, Y., Yang, C., & Li, J. (2015). Dasatinib enhances antitumor activity of paclitaxel in ovarian cancer through Src signaling. Molecular Medicine Reports, 12(3), 3249–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 6(1), 56–68.

    Article  CAS  PubMed  Google Scholar 

  18. Croft, D. R., & Olson, M. F. (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Molecular and Cellular Biology, 26(12), 4612–4627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng, X., et al. (2008). Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proceedings of the National Academy of Sciences of the USA, 105(18), 6638–6643.

    Article  CAS  PubMed  Google Scholar 

  20. Nagy, T., et al. (2007). Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. Journal of Biological Chemistry, 282(43), 31766–31776.

    Article  CAS  Google Scholar 

  21. Lim, Y., et al. (2008). PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. Journal of Cell Biology, 180(1), 187–203.

    Article  CAS  Google Scholar 

  22. Zhai, J., et al. (2003). Direct interaction of focal adhesion kinase with p190RhoGEF. Journal of Biological Chemistry, 278(27), 24865–24873.

    Article  CAS  Google Scholar 

  23. Tan, L. H., Sykes, P. H., Alkaisi, M. M., & Evans, J. J. (2015). The characteristics of ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface. International Journal of Nanomedicine, 10, 4883–4895.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarwar, M., Sykes, P. H., Chitcholtan, K., Alkaisi, M. M., & Evans, J. J. (2019). The extracellular topographical environment influences ovarian cancer cell behaviour. Biochemical and Biophysical Research Communications, 508(4), 1188–1194.

    Article  CAS  PubMed  Google Scholar 

  25. Horton, E. R., et al. (2016). Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. Journal of Cell Biology, 212(3), 349–364.

    Article  CAS  Google Scholar 

  26. Ohta, T., et al. (2012). Inhibition of the Rho/ROCK pathway enhances the efficacy of cisplatin through the blockage of hypoxia-inducible factor-1alpha in human ovarian cancer cells. Cancer Biology & Therapy, 13(1), 36–73.

    Article  Google Scholar 

  27. Bolós V., Gasent J. M., López-Tarruella S., & Grande E. (2010). The dual kinase complex Fak-Src as apromising therapeutic target in cancer. Onco Targets and Therapy, 3, 83–97.

  28. Choi, C., Hagvall, S. H., Wu, B. M., Dunn, J. C. Y., Beygui, R. E., & Kim, C. C. J. (2007). Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials, 28, 1672–1679.

    Article  CAS  PubMed  Google Scholar 

  29. Lim, J. Y., Hansen, J. C., Siedlecki, C. A., Runt, J., & Donahue, H. J. (2005). Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. Journal of the Royal Society Interface, 2(2), 97–108.

    Article  CAS  PubMed Central  Google Scholar 

  30. Pennisi, C. P., et al. (2011). N anoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces. Colloids and Surfaces B: Biointerfaces, 85(2), 189–197.

    Article  CAS  PubMed  Google Scholar 

  31. Giannini, M., et al.(2018). Nano-topography: quicksand for cell cycle progression?. Nanomedicine: Nanotechnology, Biology and Medicine, 14(8), 2656–2665.

    Article  CAS  Google Scholar 

  32. Tan, L. H., Sykes, P. H., Alkaisi, M. M., & Evans, J. J. (2017). Cell-like features imprinted in the physical nano- and micro-topography of the environment modify the responses to anti-cancer drugs of endometrial cancer cells. Biofabrication, 9(1), 1–10.

    Article  Google Scholar 

  33. Yang, S. P., & Lee, T. M. (2011). The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher. Journal of Materials Science: Materials in Medicine, 22(4), 1027–1036.

    CAS  PubMed  Google Scholar 

  34. Seo, C. H., Furukawa, K., Montagne, K., Jeong, H., & Ushida, T. (2011). The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway. Biomaterials, 32(36), 9568–9575.

    Article  CAS  PubMed  Google Scholar 

  35. Seo, C. H., Jeong, H., Furukawa, K. S., Suzuki, Y., & Ushida, T. (2013). The switching of focal adhesion maturation sites and actin filament activation for MSCs by topography of well-defined micropatterned surfaces. Biomaterials, 34(7), 1764–1771.

    Article  CAS  PubMed  Google Scholar 

  36. Lunova, M., et al. (2016). Modulation of collective cell behaviour by geometrical constraints. Integrative Biology, 8(11), 1099–1110.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, X., Jiang, W., Kang, J., Liu, Q., & Nie, M. (2015). Knockdown of RhoA expression alters ovarian cancer biological behavior in vitro and in nude mice. Oncology Reports, 34(2), 891–899.

    Article  PubMed  Google Scholar 

  38. Schulte, C., et al. (2016). Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. Journal of Nanobiotechnology, 14(1), 1–24.

    Article  Google Scholar 

  39. Dalby, M. J., Gadegaard, N., & Oreffo, R. O. C. (2014). Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558–569.

    Article  CAS  PubMed  Google Scholar 

  40. Marlowe, T. A., Lenzo, F. L., Figel, S. A., Grapes, A. T., & Cance, W. G. (2016). Oncogenic receptor tyrosine kinases directly phosphorylate focal adhesion kinase (FAK) as a resistance mechanism to FAK-kinase inhibitors. Molecular Cancer Therapeutics, 15(12), 3028–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamilton, D. W., & Brunette, D. M. (2007). The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials, 28(10), 1806–1819.

    Article  CAS  PubMed  Google Scholar 

  42. Brasseur, K., Gévry, N., & Asselin, E. (2017). Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget, 8(3), 4008–4042.

    Article  PubMed  Google Scholar 

  43. Nakashima, M., et al. (2011). Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Molecular Cancer, 10, 1–11.

    Article  Google Scholar 

  44. Nakashima, M., Adachi, S., Yasuda, I., Yamauchi, T., Kozawa, O., & Moriwaki, H. (2010). Rho-kinase regulates negatively the epidermal growth factor-stimulated colon cancer cell proliferation. International Journal of Oncology, 36(6), 585–592.

    CAS  PubMed  Google Scholar 

  45. Evans, J. J., Alkaisi, M. M., & Sykes, P. H. (2019). Tumour initiation: a discussion on evidence for a ‘load-trigger’ mechanism. Cell Biochemistry and Biophysics, 77(4), 293–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.S.: overall execution of the research, paper writing. P.H.S.: clinical input. K.C.: data analysis. J.J.E.: scientific input, paper writing.

Corresponding author

Correspondence to Makhdoom Sarwar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwar, M., Sykes, P.H., Chitcholtan, K. et al. Deciphering Biophysical Modulation in Ovarian Cancer Cells. Cell Biochem Biophys 79, 375–386 (2021). https://doi.org/10.1007/s12013-020-00964-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00964-9

Keywords

Navigation