Skip to main content
Log in

Obestatin and Rosiglitazone Differentially Modulate Lipid Metabolism Through Peroxisome Proliferator-activated Receptor-γ (PPARγ) in Pre-adipose and Mature 3T3-L1 Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Obestatin is a 23-residue peptide, obtained after posttranslational modification of preproghrelin. It has been shown, in Swiss albino mice, to upregulate glycerolipid metabolism and PPARγ signaling. It was opined that the by-products of increased glycerolipid metabolism triggered PPARγ signaling. It was hypothesized that obestatin upon co-administration with a full agonist of PPARγ should reveal the comparative significance or possible synergy in PPARγ signaling. We postulated they would act synergistically by obestatin increasing PPARγ expression and rosiglitazone enhancing PPARγ activity. We evaluated the combination in DIO-C57BL/6 mice and observed that obestatin completely reversed the increase in subcutaneous fat brought about by rosiglitazone. To understand their role at the adipocyte level, 3T3-L1 cells were treated with a combination of obestatin and rosiglitazone during (1) initiation of differentiation and (2) after 14 days from initiation of differentiation when the adipocytes were mature. Interestingly, their influence was mainly adipogenic and showed double lipid accumulation when estimated 14 days after initiation of differentiation. There was an upregulation of Pparγ by fourfold, Hsl by eightfold, Glut4 by fourfold, Leptin by 2.7-fold, Atgl by sixfold, Fasn by sixfold, and Fabp4 by sevenfold at the mRNA level, whereas in mature adipocytes there was a significant decrease in fat accumulation by 20%. There was downregulation of Pparγ, Hsl, Lpl, and Fasn by 0.5-fold at the mRNA level. These results show that the combined influence of obestatin and rosiglitazone is significant and the outcome is dependent on the metabolic stage of the adipocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

Abbreviations

PPARγ:

Peroxisome proliferator-activated receptor gamma

C/EBPα:

CCAAT/enhancer-binding protein alpha

HSL:

Hormone-sensitive lipase

LPL:

Lipoprotein lipase

FASN:

Fatty acid synthase

GLUT1:

Glucose transporter 1

GLUT4:

Glucose transporter 4

FABP4:

Fatty acid-binding protein-4

ATGL:

Adipose triglyceride lipase, also called PNPLA2

PLIN1:

Perilipin1

References

  1. Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C., & Hsueh, A. J. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science, 310(5750), 996–999. https://doi.org/10.1126/science.1117255.

    Article  CAS  PubMed  Google Scholar 

  2. Tang, S. Q., Jiang, Q. Y., Zhang, Y. L., Zhu, X. T., Shu, G., Gao, P., Feng, D. Y., Wang, X. Q., & Dong, X. Y. (2008). Obestatin: its physicochemical characteristics and physiological functions. Peptides, 29(4), 639–645. https://doi.org/10.1016/j.peptides.2008.01.012.

    Article  CAS  PubMed  Google Scholar 

  3. Gutierrez-Grobe, Y., Villalobos-Blasquez, I., Sánchez-Lara, K., Villa, A. R., Ponciano-Rodríguez, G., Ramos, M. H., Chavez-Tapia, N. C., Uribe, M., & Méndez-Sánchez, N. (2010). High ghrelin and obestatin levels and low risk of developing fatty liver. Annals of Hepatology, 9(1), 52–57. https://doi.org/10.1016/S1665-2681(19)31679-5.

    Article  CAS  PubMed  Google Scholar 

  4. Nagaraj, S., Peddha, M. S., & Manjappara, U. V. (2009). Fragment analogs as better mimics of obestatin. Regulatory Peptides, 158(1–3), 143–148. https://doi.org/10.1016/j.regpep.2009.08.008.

    Article  CAS  PubMed  Google Scholar 

  5. Nagaraj, S., Raghavan, A. V., Rao, S. N., & Manjappara, U. V. (2014). Obestatin and Nt8U influence glycerolipid metabolism and PPAR gamma signaling in mice. The International Journal of Biochemistry & Cell Biology, 53, 414–422. https://doi.org/10.1016/j.biocel.2014.06.006.

    Article  CAS  Google Scholar 

  6. Zhang, J. V., Holger, J., Chin-Wei, L., Klein, C., Van Kolen, K., Ver Donck, L., De, A., Baart, E., Li, J., Moechars, D., & Hsueh, A. J. W. (2008). Obestatin induction of early-response gene expression in gastrointestinal and adipose tissues and the mediatory role of G protein-coupled receptor, GPR39. Molecular Endocrinology, 22(6), 1464–1475. https://doi.org/10.1210/me.2007-0569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chartrel, N., Alvear-Perez, R., Leprince, J., Iturrioz, X., Reaux-Le Goazigo, A., Audinot, V., Chomarat, P., Coge, F., Nosjean, O., Rodriguez Galizzi, M. J. P., Boutin, J. A., Vaudry, H., & Llorens-Cortes, C. (2007). Comment on “obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake”. Science, 351(5813), 766–767. https://doi.org/10.1126/science.1135047.

    Article  CAS  Google Scholar 

  8. Lauwers, E., Landuyt, B., Arckens, L., Schoofs, L., & Luyten, W. (2006). Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochemical and Biophysical Research Communications, 351(1), 21–25. https://doi.org/10.1016/j.bbrc.2006.09.141.

    Article  CAS  PubMed  Google Scholar 

  9. Pradhan, G., Wu, C. -S., Lee, J. H., Kanikarla, P., Guo, S., Yechoor, V. K., Samson, S. L., & Sun, Y. (2016). Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Scientific Reports, 7, 979. https://doi.org/10.1038/s41598-017-00888-0.

    Article  CAS  Google Scholar 

  10. Gurriarán-Rodríguez, U., Al-Massadi, O., Roca-Rivada, A., Crujeiras, A. B., Gallego, R., Pardo, M., Seoane, L. M., Pazos, Y., Casanueva, F. F., & Camiña, J. P. (2011). Obestatin as a regulator of adipocyte metabolism and adipogenesis. Journal of Cellular and Molecular Medicine, 15(9), 1927–1940. https://doi.org/10.1111/j.1582-4934.2010.01192.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wojciechowicz, T., Skrzypski, M., Kołodziejski, P. A., Szczepankiewicz, D., Pruszyńska‑Oszmałek, E., Kaczmarek, P., Strowski, M. Z., & Nowak, K. (2015). Obestatin stimulates differentiation and regulates lipolysis and leptin secretion in rat preadipocytes. Molecular Medicine Reports, 12, 8169–8175. https://doi.org/10.3892/mmr.2015.4470.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J. E., & Ge, K. (2014). Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell & Bioscience, 4, 29. https://doi.org/10.1186/2045-3701-4-29.

    Article  CAS  Google Scholar 

  13. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., & Spiegelman, B. M. (1994). PPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes & Development, 8(10), 1224–1234. https://doi.org/10.1101/gad.8.10.1224.

    Article  CAS  Google Scholar 

  14. Schoonjans, K., Staels, B., & Auwerx, J. (1996). The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochimica et Biophysica Acta, 1302(2), 93–109. https://doi.org/10.1016/0005-2760(96)00066-5.

    Article  CAS  PubMed  Google Scholar 

  15. Rosen, E. D., & Spiegelman, B. M. (2000). Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology, 16(1), 145–171. https://doi.org/10.1146/annurev.cellbio.16.1.145.

    Article  CAS  PubMed  Google Scholar 

  16. Festuccia, W. T., Laplante, M., Berthiaume, M., Gélinas, Y., & Deshaies, Y. (2006). PPARγ agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control. Diabetologia, 49(10), 2427–2436. https://doi.org/10.1007/s00125-006-0336-y.

    Article  CAS  PubMed  Google Scholar 

  17. Rangwala, S. M., & Lazar, M. A. (2000). Transcriptional control of adipogenesis. Annual Review of Nutrition, 20(1), 535–559. https://doi.org/10.1146/annurev.nutr.20.1.535.

    Article  CAS  PubMed  Google Scholar 

  18. Savage, D. B.(2005). PPAR gamma as a metabolic regulator: insights from genomics and pharmacology. Expert Reviews in Molecular Medicine, 7(1), 1–16. https://doi.org/10.1017/S1462399405008793.

    Article  PubMed  Google Scholar 

  19. Desvergne, B., & Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Reviews, 20(5), 649–688. https://doi.org/10.1210/edrv.20.5.0380.

    Article  CAS  PubMed  Google Scholar 

  20. Chiarelli, F., & Di Marzio, D. (2008). Peroxisome proliferator-activated receptor-gamma agonists and diabetes: current evidence and future perspectives. Vascular Health and Risk Management, 4(2), 297–304. https://doi.org/10.2147/vhrm.s993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mallikarjuna, B. G., & Manjapapra, U. V. (2020). Co-administration with obestatin reduces accumulation of subcutaneous fat due to rosiglitazone administration in DIOC57BL/6 mice. International Journal of Peptide Research and Therapeutics. https://doi.org/10.1007/s10989-020-10028-4.

  22. Zebisch, K., Voigt, V., Wabitsch, M., & Brandsch, M. (2012). Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical Biochemistry, 425(1), 88–90. https://doi.org/10.1016/j.ab.2012.03.005.

    Article  CAS  PubMed  Google Scholar 

  23. Kraus, N. A., Ehebauer, F., Zapp, B., Rudolphi, B., Kraus, B. J., & Kraus, D. (2016). Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte, 5(4), 351–358. https://doi.org/10.1080/21623945.2016.1240137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  Google Scholar 

  25. Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    Article  CAS  Google Scholar 

  26. Jacobs, N. J., & VanDemark, P. J. (1960). The purification and properties of the α-glycerophosphate-oxidizing enzyme of Streptococcus faecalis 10C1. Archives of Biochemistry and Biophysics, 88, 250–255.

    Article  CAS  Google Scholar 

  27. Granata, R., Davide, G., & Raul, M. L., et al. (2012). Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation. FASEB Journal, 26(8), 3393–3411. https://doi.org/10.1096/fj.11-201343.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, L. -F., Purushotham, A., Wendel, A. A., Koba, K., DeIuliis, J., Lee, K., & Belury, M. A. (2009). Regulation of adipose triglyceride lipase by rosiglitazone. Diabetes, Obesity and Metabolism, 11(2), 131–142. https://doi.org/10.1111/j.1463-1326.2008.00916.x.

    Article  CAS  PubMed  Google Scholar 

  29. Langin, D. (2006). Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacological Research, 53(6), 482–491. https://doi.org/10.1016/j.phrs.2006.03.009.

    Article  CAS  PubMed  Google Scholar 

  30. Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., & Sul, H. S. (2007). Regulation of lipolysis in adipocytes. Annual Review of Nutrition, 27, 79–101. https://doi.org/10.1146/annurev.nutr.27.061406.093734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palfreyman, R. W., Clark, A. E., Denton, R. M., Holman, G. D., & Kozka, I. J. (1992). Kinetic resolution of the separate GLUT1 and GLUT4 glucose transport activities in 3T3-L1 cells. Biochemical Journal, 284(Pt 1), 275–282. https://doi.org/10.1042/bj2840275.

    Article  CAS  PubMed Central  Google Scholar 

  32. Sztalryd, C., & Dawn, L. B. (2017). The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochimica et Biophysica Acta, 1862(10 Pt B), 1221–1232. https://doi.org/10.1016/j.bbalip.2017.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, Y.-H., Kim, S.-N., Kwon, H.-J., & Granneman, J. G. (2017). Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Scientific Reports, 7, 39794. https://doi.org/10.1038/srep39794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sustarsic, E. G., Ma, T., Lynes, M. D., Tseng, Y. -H., Færgeman, N. J., & Gerhart-Hines, Z. (2018). Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metabolism, 28, 159–174.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.B.G. gratefully acknowledges the financial support provided by ICMR for SRF (No.3/1/2/20/Nut./2012). We acknowledge funding by Council of Scientific and Industrial Research, India, through the major laboratory project MLP-116 and WELFO under the 12th 5-year plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma V. Manjappara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

B. G., M., Manjappara, U.V. Obestatin and Rosiglitazone Differentially Modulate Lipid Metabolism Through Peroxisome Proliferator-activated Receptor-γ (PPARγ) in Pre-adipose and Mature 3T3-L1 Cells. Cell Biochem Biophys 79, 73–85 (2021). https://doi.org/10.1007/s12013-020-00958-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00958-7

Keywords

Navigation